OpenCV—python 颜色直方图与直方图均衡化

文章目录

      • 一、颜色直方图
          • 1.1 使用opencv展示直方图
          • 1.2 使用matplotlib绘制
      • 二、直方图均衡化
          • 2.1 全局直方图均衡化与自适应均衡化
          • 2.2 使用查找表来拉伸直方图
          • 2.3 直方图均衡化—RGB2YCrCb
          • 2.4 直方图均衡化—RGB2YUV

一、颜色直方图

1.1 使用opencv展示直方图
函数 cv2.calcHist(image,channels,mask,histSize,ranges) -> list

image: array为待计算直方图的图像
channels:list 通道,RGB图像可以指定[0,1,2],灰度图像只有[0],
mask 掩码,可以指定图像的范围,如果是全图,默认为none
hitsize 为直方图的灰度级数,例如[0,255]一共256级
range 为像素值范围,为[0,255]

下面三个函数功能在RGB图像处理下差不多,请自行查阅资料
np.histogram()
np.bincount()
cv2.calcHist()

import cv2    
import numpy as np


def calcAndDrawHist(image, color):  
    hist= cv2.calcHist([image], [0], None, [256], [0.0,255.0])  
    minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(hist)  
    histImg = np.zeros([256,256,3], np.uint8)  
    hpt = int(0.9* 256);  
      
    for h in range(256):  
        intensity = int(hist[h]*hpt/maxVal)  
        cv2.line(histImg,(h,256), (h,256-intensity), color)  
    return histImg


if __name__ == '__main__':  
    original_img = cv2.imread("666.png")
    b, g, r = cv2.split(img)  
  
    histImgB = calcAndDrawHist(b, [255, 0, 0])  
    histImgG = calcAndDrawHist(g, [0, 255, 0])  
    histImgR = calcAndDrawHist(r, [0, 0, 255])  

    cv2.imshow("histImgB", histImgB)  
    cv2.imshow("histImgG", histImgG)  
    cv2.imshow("histImgR", histImgR)  
    cv2.imshow("Img", img)  
    cv2.waitKey(0)  
    cv2.destroyAllWindows() 

在这里插入图片描述

1.2 使用matplotlib绘制

matplotlib.pyplot.plot(hist,color)进行绘制

plt.hist(img.ravel(),hitsizes,ranges,color=)
img.ravel()将原图像的array数组转成一维的数组
hitsizes为直方图的灰度级数
ranges为灰度范围[0,255]
color使用color=’'来指定颜色
展示方法:
hist = cv2.calcHist([res],[0],None,[256],[0,255])
plt.plot(hist,'r')
plt.show()
=======================================================
plt.hist(res.ravel(), 256, [0, 256],color='r')
plt.show()

二、直方图均衡化

为什么要进行直方图均衡化呢?我们日常拍照时,背对太阳时或晚上出现图像欠曝,面对太阳拍照会出现过曝,图像均衡可以通过图像直方图均衡来调整图像,也可以通过 γ \gamma γ 校正,来校正图片。

图像的直方图是对图像对比度效果上的一种处理,旨在使得图像整体效果均匀,黑与白之间的各个像素级之间的点更均匀一点。亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。(直接效果展示)
OpenCV—python 颜色直方图与直方图均衡化_第1张图片
cv2.equalizeHist(img) 均衡化的原图像【输入img:单通道图像】则返回值即为均衡化后的图像。

2.1 全局直方图均衡化与自适应均衡化
import cv2
import numpy as np
 
img = cv2.imread('0002.jpg',0)
 
img1 = cv2.equalizeHist(img)                               # 全局直方图均衡化
clahe = cv2.createCLAHE(clipLimit=2.0,tileGridSize=(8,8))  # 自适应直方图均衡化
cll = clahe.apply(img)
 
res = np.hstack((img,img1,cll))
cv2.imwrite("res.jpg",res)

显然全局直方图均衡化效果不好,造成部分过曝,部分细节消失。
如下图:依次是原图;全局直方图均衡化;自适应直方图均衡化
OpenCV—python 颜色直方图与直方图均衡化_第2张图片

2.2 使用查找表来拉伸直方图

在图像处理中,直方图均衡化一般用来均衡图像的强度,或增加图像的对比度。
观察上图中原始图像的直方图,很容易发现大部分强度值范围都没有用到。
因此先检测图像非0的最低(imin)强度值和最高(imax)强度值。
将最低值imin设为0,最高值imax设为255。中间的按255.0*(i-imin)/(imax-imin)+0.5)的形式设置。

import cv2
import numpy as np
 
image = cv2.imread("ABC.png", 0)
lut = np.zeros(256, dtype = image.dtype )                  #创建空的查找表
 
hist,bins = np.histogram(image.flatten(),256,[0,256]) 
cdf = hist.cumsum()                                        #计算累积直方图
cdf_m = np.ma.masked_equal(cdf,0)                          #除去直方图中的0值
cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min())#等同于前面介绍的lut[i] = int(255.0 *p[i])公式
cdf = np.ma.filled(cdf_m,0).astype('uint8')                #将掩模处理掉的元素补为0
 
#计算
result2 = cdf[image]
result = cv2.LUT(image, cdf)
 
cv2.imshow("OpenCVLUT", result)
cv2.imshow("NumPyLUT", result2)
cv2.waitKey(0)
cv2.destroyAllWindows()

OpenCV—python 颜色直方图与直方图均衡化_第3张图片

import cv2
import numpy as np
 
image = cv2.imread("ABC.png", 0)
lut = np.zeros(256, dtype = image.dtype )  # 创建空的查找表
hist= cv2.calcHist([image],[0],None,[256],[0.0,255.0])
minBinNo, maxBinNo = 0, 255

for binNo, binValue in enumerate(hist):         #计算从左起第一个不为0的直方图柱的位置
    if binValue != 0:
        minBinNo = binNo
        break

for binNo, binValue in enumerate(reversed(hist)):#计算从右起第一个不为0的直方图柱的位置
    if binValue != 0:
        maxBinNo = 255-binNo
        break
print(minBinNo, maxBinNo)
 
for i,v in enumerate(lut):                      #生成查找表,方法来自参考文献1第四章第2节
    print(i)
    if i < minBinNo:
        lut[i] = 0
    elif i > maxBinNo:
        lut[i] = 255
    else:
        lut[i] = int(255.0*(i-minBinNo)/(maxBinNo-minBinNo)+0.5)

#计算
result = cv2.LUT(image, lut)
cv2.imshow("hist", hist)
cv2.imshow("Result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
2.3 直方图均衡化—RGB2YCrCb

方法:将RGB彩色图像先转换到YPbPr空间,然后只对亮度通道进行全局直方图均衡化和自适应直方图均衡化,最后再将亮度通道和PbPr通道合并形成彩色图像,然后再转换回RGB空间中。
代码详细:https://docs.opencv2.org/4.1.0/d5/daf/tutorial_py_histogram_equalization.html

import numpy as np
import cv2


# RGB图像全局直方图均衡化
def hisEqulColor1(img):
    ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB)
    channels = cv2.split(ycrcb)
    cv2.equalizeHist(channels[0], channels[0])   # 对第1个通道即亮度通道进行全局直方图均衡化并保存
    ycrcb = cv2.merge(channels)
    img = cv2.cvtColor(ycrcb, cv2.COLOR_YCR_CB2BGR)
    return img


# RGB图像进行自适应直方图均衡化,代码同上的地方不再添加注释
def hisEqulColor2(img):
    ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB)
    channels = cv2.split(ycrcb)
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    clahe.apply(channels[0], channels[0])

    ycrcb = cv2.merge(channels)
    img = cv2.cvtColor(ycrcb, cv2.COLOR_YCR_CB2BGR)
    return img

if __name__ == '__main__':
    img = cv2.imread(r'C:\Users\xxx\Desktop\004.png')
    img1 = img.copy()
    img2 = img.copy()

    res1 = hisEqulColor1(img1)
    res2 = hisEqulColor2(img2)

    res = np.hstack((img, res1, res2))
    cv2.imwrite(r'C:\Users\xxx\Desktop\res1.jpg', res)

如下图:依次是原图;全局直方图均衡化;自适应直方图均衡化
OpenCV—python 颜色直方图与直方图均衡化_第4张图片

2.4 直方图均衡化—RGB2YUV
import numpy as np
import cv2


# 全局直方图均衡化
def hisEqulColor1(img):
    image_yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)
    image_yuv[:, :, 0] = cv2.equalizeHist(image_yuv[:, :, 0])
    img = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)
    return img


# 自适应直方图均衡化
def hisEqulColor2(img):
    image_yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    clahe.apply(image_yuv[:, :, 0])
    img = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2BGR)
    return img

if __name__ == '__main__':
    img = cv2.imread(r'C:\Users\xxx\Desktop\004.png')
    img1 = img.copy()
    img2 = img.copy()

    res1 = hisEqulColor1(img1)
    res2 = hisEqulColor2(img2)

    res = np.hstack((img, res1, res2))
    cv2.imwrite(r'C:\Users\xxx\Desktop\res4.jpg', res)

如下图:依次是原图;全局直方图均衡化;自适应直方图均衡化
OpenCV—python 颜色直方图与直方图均衡化_第5张图片
仔细观察 RGB2YUV与RGB2YCrCb 自适应直方图均衡化结果:个人觉得RGB2YUV的暗部细节更多一些。

你可能感兴趣的:(OpenCV,计算机视觉)