- 机器学习:集成学习方法之随机森林(Random Forest)
慕婉0307
机器学习集成学习机器学习随机森林
一、集成学习与随机森林概述1.1什么是集成学习集成学习(EnsembleLearning)是机器学习中一种强大的范式,它通过构建并结合多个基学习器(baselearner)来完成学习任务。集成学习的主要思想是"三个臭皮匠,顶个诸葛亮",即通过组合多个弱学习器来获得一个强学习器。集成学习方法主要分为两大类:Bagging(BootstrapAggregating):并行训练多个基学习器,然后通过投票
- LLM---大语言模型技术研究报告
摘要大语言模型(LLMs)已从技术突破走向产业规模化落地。2025年,全球LLMs进入“模型即服务”(MaaS)时代,参数量级突破万亿级,多模态能力、智能体协作、专业化细分成为主流趋势。中国大模型领域在DeepSeek、通义千问、讯飞星火等头部模型推动下,实现技术突破与场景创新。本报告基于截至2025年7月的最新数据,系统梳理LLMs的技术演进、应用场景、挑战与未来方向。一、大语言模型的演进与突破
- Web3.0时代的安全悖论:去中心化如何反被中心化攻击?
5GOrDiejfgf
web3安全去中心化
详细内容扩展:技术解析:Solana链上RugPull攻击手法复盘(3亿美元被盗)中心化交易所安全措施对比(CoinbasevsBinance安全预算)合规框架:SEC监管动态:Howey测试最新应用案例税务合规工具:Chainalysis+CoinTracking集成方案投资建议:安全审计公司评级(CertikA级项目列表)硬件钱包对比评测(LedgerNanoXvsTrezorModelT)
- Spring AI 实战:第二章、Spring AI提示词之玩转AI占卜的艺术
liaokailin
SpringAI实战人工智能springjava
目录(如果文章对您有一丢丢输入,请点赞、收藏、转发吧~)源码开篇、大模型时代:我们正站在浪潮之巅第一章、SpringAI入门之DeepSeek调用第二章、SpringAI提示词之玩转AI占卜的艺术第三章、SpringAI结构化输出之告别杂乱无章第四章、SpringAI多模态之看图说话
- 提示词工程推荐阅读论文
司南锤
LLMprompt人工智能自然语言处理
论文目录提示工程少样本提示思维链提示自洽性生成知识提示自动提示工程多模态提示提示技巧对抗提示提示工程PromptEngineeringforText-BasedGenerativeModels论文链接:https://arxiv.org/abs/2107.13586简介:本文概述了提示工程,并讨论了它在各种基于文本的生成模型中的应用。少样本提示Few-shotLearningwithRetriev
- LangChain + Ollama + Spring AI:打造能自动决策的智能 Agent
大模型应用
langchainspring人工智能llamaLLMprompt
AI的出现极大的提升了生产力,对我们程序员来说,积极的拥抱新技术是非常有必要的。今天我们基于LangChain框架,创建一个我们自己的Agent,并集成我们自己的MCP工具。体验一把LangChain。我的系统是Windows。在开始之前,我们需要:•使用Ollama运行deepseek-r1:7b•使用Node.js开发的MCPWeatherService工具•使用Flask提供WebAPI服务
- Java的SpringAI+Deepseek大模型实战-会话记忆【三】
梦幻通灵
大数据AI软件工程
文章目录背景项目环境实现步骤第一步、定义会话存储方式方式一、定义记忆存储ChatMemory方式二、注入记忆存储ChatMemory第二步、配置会话记忆方式一、老版本实现方式二、新版本实现第三步、添加会话ID异常处理1、InMemoryChatMemory无法解析背景前两期搭建起大模型对话的框架,如何进行会话记忆项目环境SpringAi版本:1.0.0实现步骤第一步、定义会话存储方式在配置类Com
- 云原生环境下部署大语言模型服务:以 DeepSeek 为例的实战教程
一ge科研小菜菜
人工智能Python编程语言语言模型人工智能自然语言处理
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注一、引言随着DeepSeek、Qwen、ChatGLM等大语言模型(LLM)的开放与普及,企业将其私有化部署并服务化的需求愈发迫切。然而,从HuggingFace下载模型,到提供一个结构化、稳定、可调用的API,并不是一个简单过程。它涉及:模型推理框架(如vLLM)的集成;WebAPI封装(FastAPI等);容器化部署与资源调度;可扩展性设计与
- 【软件系统架构】系列四:多核处理器架构与调度(Deep Dive)
34号树洞
自学软件系统架构系统架构嵌入式硬件嵌入式软件
目录一、多核处理器架构1.缓存结构与内存一致性2.超线程技术(Hyper-Threading)3.多核架构的优势二、多核架构类型详解(1)对称多核结构(SymmetricMulti-Processing,SMP)(2)非对称多核结构(AsymmetricMulti-Processing,AMP)(3)混合式多核结构(HeterogeneousMulti-Core)三、多核调度算法与策略1.调度目标
- 巨头开源的背后,是价格战还是价值战?
CSDN资讯
开源
当巨头们纷纷开源自家模型,他们背后的博弈是什么?放眼全球,谷歌在发布其王牌模型Gemini2.5Pro时,选择开源其衍生的轻量级模型Gemma,Meta的LLaMA虽名为开源,却始终带着商业限制的“镣铐”……他们小心谨慎地通过开源开放吸引全球开发者的关注,同时却牢牢掌控核心能力与商业变现路径。回到国内,从阿里通义千问全尺寸开源到DeepSeek的一鸣惊人,再到前几天百度开源其主力模型文心4.5。中
- pytorch官方文档60分钟入门笔记
xiaodidadada
机器学习
文章目录1.张量(Tensors)定义张量张量操作2.自动求导(autograd)变量Variable3.神经网络4.训练一个分类器载入数据5.数据并行day63参考:官方文档https://blog.csdn.net/u014630987/article/details/786690511.张量(Tensors)tensors和numpy的ndarray类似,但是tensors可以使用GPU加快
- DeepSeek打破AI天花板:MoE架构+RL推理,效率提升5倍的底层逻辑
m0_74825409
面试学习路线阿里巴巴人工智能架构
文章目录一、引言二、MoE架构:高效计算的核心支撑(一)MoE架构概述(二)DeepSeekMoE架构的创新点(三)MoE架构的代码实现示例三、RL推理:智能提升的关键驱动(一)RL推理概述(二)R1的训练流程(三)RL推理中的关键技术(四)RL推理的代码实现示例四、MoE架构与RL推理的结合:效率提升的奥秘(一)计算效率的提升(二)推理能力的增强(三)整体性能的飞跃五、结论与展望《DeepSee
- 零基础起步:基于GpuGeek的文本生成模型实战
昊昊该干饭了
人工智能nlp深度学习gpu算力gru
在自然语言处理(NLP)领域,文本生成任务广泛应用于问答系统、智能摘要、内容创作等方向。本文将带领读者使用GpuGeek平台,从注册、上传数据到实例部署与训练,完整构建一个基于GPT2模型的文本生成系统,实战掌握AI模型的云端开发流程。目录一、GpuGeek平台使用流程详解1.注册与登录2.数据上传3.创建训练实例4.启动与使用实例5.关闭实例(手动&自动)二、文本生成实战任务:微调GPT-21.
- Tensorflow 回归模型 FLASK + DOCKER 部署 至 Ubuntu 虚拟机
准备工作:安装虚拟机,安装ubuntu,安装python3.x、pip和对应版本的tensorflow和其他库文件,安装docker。注意事项:1.windows系统运行的模型文件不能直接运行到虚拟机上,需在虚拟机上重新运行并生成模型文件2.虚拟机网络状态改为桥接Flask代码如下:fromflaskimportFlask,request,jsonifyimportpickleimportnump
- 推荐文章:探索深度学习的不确定性边界 —— SDE-Net 开源项目解析
史多苹Thomas
推荐文章:探索深度学习的不确定性边界——SDE-Net开源项目解析SDE-NetCodeforpaper:SDE-Net:EquippingDeepNeuralnetworkwithUncertaintyEstimates项目地址:https://gitcode.com/gh_mirrors/sd/SDE-Net在当今的人工智能领域,深度神经网络(DNN)已经成为推动技术创新的基石。然而,其预测的
- 使用GPU进行机器学习训练时,如果GPU-Util计算核心满载工作但是显存占用较少,应该如何优化?
十子木
机器学习深度学习人工智能
是否需要优化?如果任务运行正常:无需干预(GPU设计本就是优先榨干计算性能)。如果出现卡顿或效率低下:增大batch_size:提升显存占用,减少数据搬运次数(但需避免OOM)。启用混合精度:torch.cuda.amp可减少显存占用并加速计算。检查CPU到GPU的数据流:避免频繁的小数据拷贝(如DataLoader的num_workers设置)。
- 【jetson】Linux下nvidia Jetson烤机程序(CPU+GPU)
前言烤机程序用于把设备的使用率拉满,进行可靠性测试。这里主要贴一下cpu和gpu的烤机程序。cpu为arm64,gpu是orinnano的模组。烤机的jetson设备为如下,输入54v:reComputerMiniJ3011-IntelligentEdgeAIComputerwithNVIDIA®Jetson™Orin™Nano8GBCPU-burn终端安装测试工具:sudoaptinstalls
- 机器学习中为什么要用混合精度训练
十子木
机器学习机器学习人工智能
目录FP16与显存占用关系机器学习中一般使用混合精度训练:FP16计算+FP32存储关键变量。FP16与显存占用关系显存(VideoRAM,简称VRAM)是显卡(GPU)专用的内存。FP32(单精度浮点):传统深度学习默认使用32位浮点数每个参数占用`4字节`例如:1亿参数的模型→约400MB显存FP16(半精度浮点):每个参数占用`2字节`(直接减半)相同模型→约200MB显存双精度浮点(FP6
- yolov算法详解_yolo 目标检测算法个人总结(yolov1)
CHAO JIANG
yolov算法详解
yolo目标检测算法个人总结目前yolo目标检测有两个版本,分别为v1和v2。因工作需要用yolo算法检测人物,所以这段时间重点看了这两篇论文,并实现了对应的tensorflow代码。这里记录下在论文阅读过程中的一些细节信息,留给自己,同时也希望各位能指出本人理解错误的地方,谢谢!一:yolov1关于yolov1算法的详解在网上已经非常多了,在这里我大概叙述下算法的流程,以及在开发过程中遇到的一些
- 入门pytorch-联邦学习
四代机您发多少
pytorch人工智能python
本文联邦学习的代码引用于https://github.com/shaoxiongji/federated-learning本篇文章相当于带大家读一遍联邦学习的代码,同时加深了大家对联邦学习和Pytorch框架的理解。这里想简单介绍一下联邦学习。联邦学习说白了,就是假如有NNN个数据拥有者F1,...,FN{F_1,...,F_N}F1,...,FN,他们希望使用这些数据来训练机器学习模型,但是又各
- 报告下载丨北京大学:2025年DeepSeek在教育和学术领域的应用场景与案例(上)报告下载丨德勤:2025年生成式AI档案报告下载丨SuperCLUE 中文大模型基准测评 2025
智能计算研究中心
人工智能
该报告全面探讨了DeepSeek在教育和学术领域的应用。DeepSeek在2024-2025年推出的模型引发国际关注,其通过提升推理能力、全量开源、降低成本及国产自主研发等优势,在教育行业推动了范式革命。报告涵盖了从学前教育到特殊教育的各个阶段,列举了高校如北京大学的学科专业问答工具、北大青鸟的实训平台等应用案例。为教育工作者提供了系统指导,有助于推动教育创新,培养适应AI时代的各类人才。
- Java开发的智能新时代——如何利用AI工具提升编程效率
inscode_055
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:Java开发的智能新时代——如何利用AI工具提升编程效率引言在当今快速发展的科技时代,Java作为一门广泛应用的编程语言,在企业级应用、Web开发、移动应用等领域占据着重要地位。然而,随着项目复杂度的增加和开发周期的缩短,传统的开发方式已难以满足现代开发的需求。幸运的是,智能化的工具软件如InsCodeAIIDE正逐
- Java 开发的智能化革命——如何借助最新工具提升编程效率
inscode_014
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:Java开发的智能化革命——如何借助最新工具提升编程效率在当今快速发展的科技时代,Java作为一门广泛应用的编程语言,依然保持着其强大的生命力和广泛的影响力。无论是企业级应用、Web开发还是移动应用开发,Java都扮演着不可或缺的角色。然而,随着项目复杂度的增加和技术更新换代的速度加快,Java开发者们面临着前所未有
- 长尾形分布论文速览【80-119】
木木阳
Long-tailed人工智能
为便于理解和应用,以下将30篇关于长尾分布的研究文献按主题进行分类整理。每一大类包含相应的工作,帮助我们从整体上把握各方向的研究进展。1.长尾半监督学习与伪标签优化Paper90:Uncertainty-awareSamplingforLong-tailedSemi-supervisedLearning提出了一种动态阈值选择方法(UDTS),能有效改善尾部分类性能,适用于不平衡类别的半监督学习。P
- 【翻译】Part4: Texture samplers.
AtripthroughtheGraphicsPipeline2011,part4|Therygblog欢迎回来。上一部分讲的是顶点着色器,还大致介绍了通用的GPU着色器单元。总的来说,它们只是向量处理器,但它们可以访问一种在其他向量处理架构中不存在的资源:纹理采样器。纹理采样器是GPU流水线不可或缺的一部分,其复杂程度(以及趣味性!)足以单独写一篇文章来介绍,那接下来就开始吧。纹理状态在开始实际
- 嵌入模型 vs 大语言模型:语义理解能力的本质区别与应用场景
chenkangck50
AI大模型语言模型人工智能机器学习
嵌入模型vs大语言模型:语义理解能力的本质区别与应用场景(实战视角)一句话总结嵌入模型的“理解”是向量表示和相似性匹配,适合做召回;大语言模型的“理解”是上下文+逻辑+世界知识综合判断,适合做分析与生成。重点是可以结合prompt和本身具有的知识两类模型的本质区别能力项嵌入模型(如BGE、SBERT)大语言模型(如GPT、GLM、DeepSeek)输出形式向量(如768维)自然语言文本(如答案、解
- KANN 是一个独立的轻量级 C 语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括 LSTM 和 GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归等
一、软件介绍文末提供程序和源码下载KANN是一个独立的轻量级C语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括LSTM和GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归、共享权重和多个输入/输出/成本的拓扑复杂神经网络。与TensorFlow等主流深度学习框架相比,KANN的可扩展性较低,但它的灵活性接近,代码库要小得多,并且仅依赖于标准C库。与
- 在NVIDIA Jetson和RTX上运行Google DeepMind的Gemma 3N:多模态AI的边缘计算革命
扫地的小何尚
人工智能边缘计算GPUNVIDIAnlpcuda
在NVIDIAJetson和RTX上运行GoogleDeepMind的Gemma3N:多模态AI的边缘计算革命文章目录在NVIDIAJetson和RTX上运行GoogleDeepMind的Gemma3N:多模态AI的边缘计算革命引言:多模态AI进入边缘计算时代文章结构概览第一章:Gemma3N模型技术架构深度解析1.1Gemma3N模型概述与发展历程1.1.1模型架构的核心设计原则1.1.2多模态
- Vue 响应式数据传递:ref、reactive 与 Provide/Inject 完全指南
Vue响应式数据传递:ref、reactive与Provide/Inject完全指南理解如何在不同组件层级间传递响应式数据是Vue开发的关键技能。我将深入探讨ref和reactive配合provide/inject的使用场景和最佳实践。响应式数据与跨层级传递架构提供数据无法传递数据provideinject根组件App.vue中间组件Container.vueDeepChild.vue在多层组件嵌
- C语言教学大变革!DeepSeek如何改变高职院校编程课堂?
武汉唯众智创
c语言开发语言程序设计Deepseek
一、引言在当今数字化转型的浪潮中,程序设计与分析能力已成为高职教育中不可或缺的核心竞争力。作为编程语言的基础,C语言不仅训练学生的计算思维,还培养其算法实现能力。然而,当前高职院校的C语言教学面临诸多挑战,如实践环节薄弱、学生创新能力不足等。DeepSeek等新一代智能编码支持系统的出现,为这一现状带来了转机。该系统融合了深度神经网络与语义解析技术,能够智能生成代码、优化缺陷检测、解构程序逻辑,并
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">