- 班车服务系统扩展到多场景(穿梭车、周转车)的升级过程中,遗传算法和蚁群算法的实现示例
Alex艾力的IT数字空间
算法动态规划javaspringboot功能测试测试覆盖率
班车服务系统扩展到多场景(如办公场地穿梭车、周转车)的升级过程中,遗传算法(GA)和蚁群算法(ACO)实现协同优化,代码示例如下:一、算法选择与场景适配1.遗传算法:全局调度优化适用场景:多车辆类型(班车、穿梭车、周转车)的协同调度、时间窗约束(如会议通勤时间)、资源分配(如车辆容量限制)。核心逻辑:通过染色体编码表示调度方案,利用选择、交叉、变异操作生成新解,逐步逼近最优调度序列。Java代码示
- 【论文笔记ing】Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem
Booksort
online笔记论文论文阅读transformer深度学习
论文中使用一个PointerFormer模型编码器部分:可逆残差模型堆叠解码器部分:指针网络自回归对于一次任务而言,推理阶段:编码器部分:一次解码器部分:循环N次,直至任务结束在训练阶段,使用强化学习,对于一个N个节点的TSP实例,算法中会以不同的起点,跑N次,得到N个轨迹,以满足TSP的对称特性,表示这都是属于一个TSP问题的(真实)解然后会计算这样表示归一化奖励,得到一个advantage,然
- MCP与Sequential Thinking:系统问题的分解与解决之道
Echo_Wish
Python进阶python人工智能算法
MCP与SequentialThinking:系统问题的分解与解决之道引言:复杂问题背后的逻辑思维在面对复杂问题时,我们常常感到手足无措,尤其是在需要将任务分解为多个步骤时。这是对个人思维能力的极大挑战,而掌握有效的思维工具则可以让事情事半功倍。今天我们讨论的两个工具:MCP(MutuallyExclusiveCollectivelyExhaustive)和SequentialThinking(顺
- elkai库高效求解旅行商(TSP)问题(Pycharm23.01)
一九天虚
pythontsp问题旅行商问题
技术文档摘要简介本技术文档描述了一个基于elkai库实现的旅行商问题(TSP)求解与可视化工具,用于计算给定城市坐标的最优路径并展示结果。以下是核心功能与技术实现要点:1.核心功能TSP求解:通过elkai库高效求解城市坐标的最优访问顺序,最小化总路径成本。路径可视化:基于Matplotlib绘制路径图,动态标注起点、城市序号及路径走向。结果分析:输出路径总成本(目标值)及城市
- 蚁群算法原理与应用详解
本文还有配套的精品资源,点击获取简介:蚁群算法是一种基于蚂蚁寻找食物路径行为的优化算法,它能够有效解决包括旅行商问题、网络路由和多目标优化在内的复杂问题。该算法模拟蚂蚁释放信息素来找到最短路径的过程,通过模拟蚂蚁的行为,算法逐步优化选择路径。蚁群算法具有并行性和全局优化能力,但也面临早熟收敛和参数调整的挑战。它已成功应用于物流优化、通信网络、任务调度、机器学习、图像处理和生物医学等众多领域。1.蚁
- 蚁群算法及蚂蚁系统的原理(js实现版)
de_fault_
js算法算法javascript图论启发式算法
蚁群算法及蚂蚁系统的原理(js实现版)蚁群算法旅行商问题蚁群系统代码实现蚁群算法蚁群算法是著名的启发式算法,常用于解决最短路径问题蚁群算法的来源蚁群算法来源于对蚂蚁寻找食物行为的观察,蚂蚁个体并不存在太高的智慧,但蚁群整体却可以通过信息素来找到通往食物的最短路径蚁群算法的原理假设从a点到b点存在2条路径,而第一条路径l短,第二条路径m长。刚开始时走l和m是随机的,但是由于l更短,所以重复频率也就更
- MATLAB蚁群算法完整教程与代码实现
Emmamkq~~
本文还有配套的精品资源,点击获取简介:蚁群算法是一种模拟蚂蚁寻找食物路径行为的全局优化方法,具有强大的数值优化能力。本资源详细介绍了在MATLAB中实现蚁群算法的关键步骤,包括初始化、规则迭代、信息素更新和停止条件等,并通过实例代码展示了算法的实用应用。这为工程师和科研人员提供了一个学习和应用蚁群算法的平台,特别是在解决旅行商问题、网络路由、生产调度等优化问题方面。1.蚁群算法简介蚁群算法,灵感来
- 基于Java的蚁群算法深度解析与完整实现
一枚码农404
算法java算法蚁群算法强化学习优化算法java算法
基于Java的蚁群算法深度解析与完整实现本文深入剖析蚁群算法(ACO)的核心原理与实现细节,结合旅行商问题(TSP)场景,提供完整的Java代码实现及工程级优化方案。文章从蚂蚁觅食行为的信息素机制出发,详解路径选择概率模型、动态信息素更新策略及参数调优方法。通过面向对象设计构建蚁群算法核心类库,实现包括路径构建、轮盘赌选择、局部/全局信息素更新等关键算法模块,并给出参数动态调整、精英策略、并行化计
- Python实现蚁群算法
闲人编程
pythonpython算法开发语言蚁群
目录蚁群算法的基本原理蚁群算法的步骤Python实现蚁群算法解决TSP问题解释举例说明蚁群算法(AntColonyOptimization,ACO)是一种基于自然界蚂蚁觅食行为的仿生算法,最早由MarcoDorigo在1992年提出。它是一种用于解决组合优化问题的概率算法,特别适用于解决旅行商问题(TSP)、路径规划等问题。蚁群算法的基本原理蚂蚁在寻找食物的过程中会在路径上留下信息素(pherom
- 蚁群算法
佛渡红尘
计算机应用与算法算法c++数据结构
蚁群算法是一种用来寻找优化路径的概率型算法,由MarcoDorigo于1992年在他的博士论文中提出。这种算法模拟了蚂蚁觅食的原理,蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,从而指导自己的行动方向。它们总是朝着信息素强度高的方向移动,因此大量蚂蚁组成的集体觅食表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗
- 基于Simulink的蚁群算法路径规划仿真建模示例
amy_mhd
算法数据库前端simulinkmatlab
目录手把手教你学Simulink——基于Simulink的蚁群算法路径规划仿真建模示例一、背景介绍路径规划的重要性蚁群算法的基本原理二、所需工具和环境三、步骤详解步骤1:创建Simulink模型步骤2:定义环境和目标创建环境模型步骤3:集成蚁群算法编写适应度函数实现蚁群算法使用MATLABFunction块步骤4:可视化结果添加XYGraph步骤5:运行仿真并评估性能步骤6:分析结果四、总结手把手
- 【机器学习】什么是逻辑回归?从入门到精通:掌握逻辑回归与二分类问题的解决之道
宸码
模式识别机器学习机器学习python逻辑回归分类人工智能算法
从入门到精通:掌握逻辑回归与二分类问题的解决之道引言1.1逻辑回归简介1.2逻辑回归的应用场景逻辑回归基本原理2.1逻辑回归概述逻辑回归的基本思想预测类别的概率2.2线性模型与Sigmoid函数线性模型Sigmoid函数Sigmoid函数的性质为什么选择Sigmoid函数2.3逻辑回归的输出:概率值分类决策代价函数与优化数学基础3.1逻辑回归的假设与目标假设目标3.2对数似然函数概率模型对数似然函
- Python实例题:基于遗传算法的旅行商问题求解
狐凄
实例python开发语言
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于遗传算法的旅行商问题求解要求:使用遗传算法解决旅行商问题(TSP)。支持以下功能:随机生成城市坐标或导入预定义城市实现遗传算法的基本操作(选择、交叉、变异)可视化进化过程和最终路径统计进化过程中的适应度变化允许用户调整遗传算法参数(种群大小、迭代次数、交叉率、变异率等)。解题思路:用列表表示城市访问顺序作为染色体。使用欧
- Python Selenium 模拟登陆淘宝滑块验证码老是失败?手动拖动也会失败!大神请指点
cda2024
pythonselenium开发语言
开篇点题:一场与滑块验证码的“战争”你是否遇到过这样令人抓狂的情况:用Python和Selenium编写脚本,试图模拟登录淘宝时,却总是被那顽固的滑块验证码卡住?更糟糕的是,有时候即使你自己手动操作,也难以成功。这不仅仅是一次编程挑战,更像是在与一个隐形的敌人进行智力较量。今天,我们就来探讨这个问题,并尝试找出解决之道。问题核心剖析滑块验证码的工作原理要理解为什么会出现这种情况,首先需要了解滑块验
- 在Simulink中进行基于蚁群算法优化滤波器带宽的智能控制系统仿真
amy_mhd
算法前端数据库simulinkmatlab
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义问题与目标示例:定义优化目标步骤2:准备数据集或模拟环境示例:生成测试信号步骤3:设计并实现蚁群算法示例:简单的蚁群算法实现步骤4:创建Simulink模型步骤5:添加滤波器模块示例:添加FIR滤波器步骤6:集成蚁群算法结果示例:MATLABFunctionBlock代码步骤7:设置仿真参数步骤8:运行仿真并分析结果四、总结蚁群算法(Ant
- 蚁群算法及其改进——全局路径规划
~夕上林~
优化算法算法
文章目录蚁群算法运行机制公式原理转移概率信息素更新步骤改进精英蚂蚁策略遗传算法+ACO程序参考文献蚁群算法蚁群算法(AntColonyOptimization,ACO)是由意大利学者MarcoDorigo于1992年提出的一种群智能优化算法,其核心思想源于对蚂蚁群体觅食行为的仿生学模拟。通过模拟蚂蚁群体在觅食过程中通过信息素进行间接通信的行为机制,利用正反馈原理动态调整路径选择策略,最终在复杂搜索
- 系统思考:救火先放火
陈思杰系统思考Jason
微信公众平台微信开放平台新浪微博百度微信
当森林着火时,很多人的第一反应是立刻扑灭火源,但最快的扑救方法往往不是扑灭火,而是在顺风口处再放一把火,形成一个隔离带,迅速阻止火势蔓延。这一方法挑战了我们的传统思维模式——我们习惯于立刻扑灭眼前的火灾,却忽略了根本的解决之道。救火先放火,我们不仅可以有效阻止火源蔓延,还能在最短的时间内创造出可以控制火势的空间。这就是系统思考的力量,它让我们学会从全局的角度思考问题,而非仅仅局限于解决表面的问题,
- 系统思考:恶性循环
陈思杰系统思考Jason
微信开放平台新浪微博百度微信公众平台微信
今天在系统思考的课程中,有一位学员分享了一个非常现实的职场困境:由于工作压力逐渐增大,焦虑感也随之上升,结果开始频繁刷短视频作为逃避。短视频看得越多,时间仿佛加速流逝,眼看着工作进度却越来越慢,形成了一个典型的恶性循环。这种情况看似简单,却揭示了现代生活中许多人面对的深层问题:在高压环境下,如何找到有效的释放方式?学员提到,真正的解决之道,或许是要培养一些能够有效缓解其他环节压力的健康方式。比如运
- 生物启发算法:AI人工智能不可或缺的技术法宝
AI智能探索者
AIAgent智能体开发实战算法人工智能ai
生物启发算法:AI人工智能不可或缺的技术法宝关键词:生物启发算法、遗传算法、粒子群优化、蚁群算法、AI优化摘要:本文将带你走进“生物启发算法”的奇妙世界——这是一类从自然界生物智慧中“偷师”的AI技术法宝。我们将通过蚂蚁找路、鸟群觅食、物种进化等生活故事,用小学生都能听懂的语言,拆解遗传算法、粒子群优化、蚁群算法等核心技术的底层逻辑;结合Python代码实战和真实AI场景(如机器人路径规划、神经网
- 如何使用MATLAB实现无人机三维路径规划
资深码侬
matlabmatlab无人机开发语言
如何使用MATLAB实现无人机三维路径规划对比蚁群算法,A*,RRT算法设置不同复杂度地图在同一地图或单独地图中对比路径包含蚁群算法、A、RRT*的详细对比以下文字及示例代码仅供参考文章目录一、准备二、代码实现1.定义问题2.创建RRT对象并设置参数3.实现碰撞检测函数4.执行路径规划三、注意事项实现无人机(UAV)的三维路径规划是一个复杂但有趣的问题,涉及到算法选择、环境建模、约束条件处理等多个
- 旅行商问题(TSP)的 C++ 动态规划解法教学攻略
iceslime
算法数据结构算法设计与分析c++
一、问题描述旅行商问题(TSP)是一个经典的组合优化问题。给定一个无向图,图中的顶点表示城市,边表示两个城市之间的路径,边的权重表示路径的距离。一个售货员需要从驻地出发,经过所有城市后回到驻地,要求总的路程最短。二、输入输出形式输入形式输入的第一行包含两个整数n和m,分别表示顶点个数和边数。接下来的m行中,每行包含三个整数u、v和w,表示顶点u和顶点v之间有一条边,边的权重为w。输出形式输出一个整
- [智能算法]蚁群算法原理与TSP问题示例
七刀
智能算法算法
目录编辑一、生物行为启发的智能优化算法1.1自然界的群体智能现象1.2人工蚁群算法核心思想二、算法在组合优化中的应用演进2.1经典TSP问题建模2.2算法流程优化三、TSP问题实战:Python实现与可视化3.1算法核心类设计3.2参数敏感性实验3.3可视化分析四、关键参数调优指南4.1基准参数范围4.2动态调参策略4.3性能优化技巧五、扩展应用与前沿方向5.1多目标优化问题5.2深度强化学习融合
- 旅行商问题(TSP)状压DP Python代码
马正气
算法#动态规划python动态规划
来自Wikipedia的定义Thetravellingsalesmanproblem(alsocalledthetravellingsalespersonproblemorTSP)asksthefollowingquestion:"Givenalistofcitiesandthedistancesbetweeneachpairofcities,whatistheshortestpossiblero
- NSGA-II与蚁群算法结合的目标规划实现
芦苇毛
本文还有配套的精品资源,点击获取简介:这个压缩包包含NSGA-II算法的实现代码,用于解决多目标优化问题,适用于工程设计、经济调度等领域。它可能还融合了蚁群算法,以处理组合优化问题。代码提供了初始化变量、非支配排序、遗传操作等关键功能,使用户能够通过算法找到多个冲突目标间的帕累托最优解集。1.NSGA-II算法在多目标优化中的应用在处理复杂问题时,工程师和研究人员经常面临需要同时优化多个目标的挑战
- 弹性力学优化算法:蚁群算法(ACO):弹性力学优化中的ACO算法变种_2024-08-08_07-16-08.Tex
chenjj4003
材料力学算法人工智能计算机视觉linux运维python大数据
弹性力学优化算法:蚁群算法(ACO):弹性力学优化中的ACO算法变种绪论蚁群算法在弹性力学优化中的应用背景在工程设计与分析领域,弹性力学优化是一个关键环节,它涉及到结构的强度、刚度和稳定性等重要属性的优化。随着计算技术的发展,复杂结构的优化设计变得越来越可行,但同时也对优化算法提出了更高的要求。传统的优化方法,如梯度下降法、牛顿法等,往往在处理非线性、多模态的优化问题时显得力不从心。蚁群算法(An
- Python33 智能优化算法之粒子群算法PSO
智能建造研究生
智能优化算法AI算法的Python实现python学习算法机器学习人工智能
智能优化算法是一类受自然界生物、物理、化学等现象启发而设计的优化算法,具备全局搜索能力,能够在复杂、多峰的搜索空间中找到近似全局最优解,常用于解决各种实际中的复杂优化问题。典型的智能优化算法包括遗传算法、粒子群优化、蚁群算法、模拟退火等。1.主要的智能优化算法遗传算法(GeneticAlgorithm,GA):基于自然选择和遗传机制的优化算法,广泛用于各种优化问题。粒子群优化算法(Particle
- 数据库迁移的艺术:团队协作中的冲突预防与解决之道
title:数据库迁移的艺术:团队协作中的冲突预防与解决之道date:2025/05/1700:13:50updated:2025/05/1700:13:50author:cmdragonexcerpt:在团队协作中,数据库迁移脚本冲突是常见问题。通过Alembic工具,可以有效地管理和解决这些冲突。冲突预防的四原则包括功能分支隔离、原子化迁移脚本、版本锁机制和自动化检测。当冲突发生时,使用ale
- 2019AndroidBATJ面试题设计模式&算法专题总结
m0_64314318
程序员面试android移动开发
10.给阿里2万多名员工按年龄排序应该选择哪个算法?11.GC算法(各种算法的优缺点以及应用场景)12.蚁群算法与蒙特卡洛算法13.子串包含问题(KMP算法)写代码实现14.一个无序,不重复数组,输出N个元素,使得N个元素的和相加为M,给出时间复杂度、空间复杂度。手写算法15.万亿级别的两个URL文件A和B,如何求出A和B的差集C(提示:Bit映射->hash分组->多文件读写效率->磁盘寻址以及
- 状压dp:带你从入门到入土(从tsp到dominoTiling问题)
Lesolitaires
动态规划算法状压dpc++
应群u要求水一篇状压dp的博客动态规划(DP)是算法竞赛和编程面试中的常客,而状态压缩动态规划(状压DP)则是其中一种高级技巧,本文将带你从零开始学习状压DP,理解其核心思想,并通过C++代码示例掌握实现方法一、什么是状压DP?状压DP是一种利用位运算来高效表示和转移状态的动态规划方法。它特别适用于状态可以用二进制位表示的问题,通常处理的是"选或不选"、"存在或不存在"这类的二元状态为什么需要状态
- Redis Sentinel 和 Redis Cluster:高可用与分布式的解决之道
啊sa最靓
Redisredissentinel分布式
在现代互联网应用中,随着用户规模和数据量的增长,系统的可用性与扩展性变得至关重要。Redis,作为一种高性能的内存数据库,凭借其快速的读写速度广泛应用于缓存、会话管理等场景。但随着应用需求的增加,单节点Redis容易成为性能瓶颈,同时也面临单点故障的问题。为了解决这些问题,Redis提供了两种强大的机制:RedisSentinel和RedisCluster。本篇博客将带大家深入了解这两者的作用、原
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><