[LeetCode] Maximum Subarray 求连续子数组的最大和

声明:原题目转载自LeetCode,解答部分为原创

Problem :

    Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

    For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
    the contiguous subarray [4,-1,2,1] has the largest sum = 6.

Solution:

    思路:动态规划问题。给出数组array[ ],假定 f(i)代表array数组中以array[ i ]元素结尾的子数组的最大和,则可推得动态转换方程为

    f(i) = f(i - 1) > 0 ? f(i - 1) + array[ i ] : array[ i ];

    穷举所有的f( i ),返回最大的一个。

    代码如下:

class Solution {
public:
    int maxSubArray(vector& nums) {
        vector max_add(nums.size());
        max_add[0] = nums[0];
        int result = nums[0];
        for(int i = 1; i < nums.size(); i ++)
        {
        	max_add[i] = max_add[i - 1] > 0 ? max_add[i - 1] + nums[i] : nums[i];
			result = max(result, max_add[i]); 
		}
		return result;
    }
};

你可能感兴趣的:(LeetCode)