- Exception:data did not match any variant of untagged enum PyPreTokenizerTypeWrapper at line 69 解决方案
爱编程的喵喵
Python基础课程pythontokenizerPyPreTokenizer解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Exception:datadidn
- 一学就会:A*算法详细介绍(Python)
不去幼儿园
人工智能(AI)#启发式算法算法python人工智能机器学习开发语言
本篇文章是博主人工智能学习以及算法研究时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在启发式算法专栏:【人工智能】-【启发式算法】(6)---《一学就会:A*算法详细介绍(Python)》一学就会:A*算法详细介绍(Python)目录A*算法介绍A*算法的核心概念A*算法的特点A*算法示例:迷宫
- 【LangChain编程:从入门到实践】实现多模态代理
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】实现多模态代理作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:LangChain编程,多模态代理,自然语言处理,多媒体数据融合,复杂任务解决能力1.背景介绍1.1大背景与问题的提出随着人工智能技术的飞速发展,尤其是大模型在自然语言处理领域的突破,如通义千问、通义万相、阿里云通义大模型等,我们正迎来一个全
- Linux 查看端口占用命令
酒酿小圆子~
linux运维服务器
文章目录1、lsof-i:端口号2、netstat命令2.1netstat-tunlp命令2.2netstat-anp命令1、lsof-i:端口号用于查看某一端口的占用情况,比如查看5000端口使用情况:sudolsof-i:5000注意:这里最好使用sudo开启管理员权限,未开启管理员权限时,可能会检测不到相关进程。(并非所有进程都能被检测到,所有非本用户的进程信息将不会显示,如果想看到所有信息
- 222222222222222
智能与优化
开发语言
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas是基于Nu
- Empowering LLMs with Logical Reasoning: 从“语言大师”到“逻辑大师”的进化之路
步子哥
人工智能
“逻辑是智慧的骨架,而语言是智慧的血肉。让大语言模型(LLMs)既能说会道,又能逻辑严谨,是AI发展的下一座高峰。”开篇:语言模型的“逻辑盲区”近年来,大语言模型(LLMs)在自然语言处理(NLP)任务中取得了令人瞩目的成就。从生成流畅的文章到翻译复杂的句子,这些模型似乎无所不能。然而,当我们试图让它们回答逻辑推理问题时,却发现它们的表现常常令人失望。比如,某顶尖LLM在回答以下问题时出现了自相矛
- 向量数据库实战介绍
Zhank10
数据库
本文将介绍三种常用的向量数据库:faiss,Milvus和Qdrant,并给出一个具体的使用例子。向量数据库(VectorDatabase)是一种专门用于存储、管理、查询、检索向量的数据库,主要应用于人工智能、机器学习、数据挖掘等领域。在向量数据库中,数据以向量的形式进行存储和处理,需要将原始的非向量型数据转化为向量表示(比如文本使用Embedding技术获得其表征向量)。这种数据库能够高效地进行
- DeepSeek 持续火爆;微信蓝包首秀;世界级人工智能科学家许主洪加盟阿里巴巴...|网易数智日报
网易数智
网易数智日报人工智能大数据业界资讯ai云计算
DeepSeek持续火爆,多个云平台上线相关模型「抢食」算力需求AI公司DeepSeek旗下大模型DeepSeek-R1「爆火」后,多个云平台宣布上线DeepSeek旗下模型。2月5日,阅文集团宣布,旗下作家辅助创作应用“作家助手”已集成幻方量化旗下AI公司深度求索(DeepSeek)的DeepSeek-R1大模型。这是DeepSeek首次应用于网文领域,旨在为作家提供更智能的创作支持。2月4日,
- A100高效架构深度解析
智能计算研究中心
其他
内容概要NVIDIAA100GPU作为面向人工智能与高性能计算的关键硬件载体,其架构创新标志着计算范式的重要演进。本文通过系统性拆解A100的核心技术模块,重点探讨其在计算密度、互联效率与资源利用率三个维度的突破性设计。在计算架构层面,第三代TensorCore通过引入细粒度结构化稀疏支持与新型数据格式,显著提升矩阵运算效率;多实例GPU(MIG)技术则通过物理级硬件隔离实现单卡多任务并行处理,为
- 跨框架模型演进与行业应用路径
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,模型框架的演进与行业应用的深度融合已成为推动产业智能化升级的核心驱动力。本文系统性梳理TensorFlow、PyTorch、MXNet等主流框架的技术发展脉络,重点分析其从通用计算架构向多模态、轻量化方向的转型路径。同时,针对模型优化技术领域,深入探讨迁移学习、超参数调优及模型压缩等方法的创新突破,揭示其在降低计算资源消耗、提升推理效率方面的关键作用。在行业
- 人工智能算法安全优化实践路径
智能计算研究中心
其他
内容概要在人工智能技术深度融入产业实践的进程中,算法安全优化已成为保障系统可靠性与社会信任的核心命题。本文系统性梳理从数据预处理到模型落地的全流程安全实践路径,聚焦金融风控、医疗影像诊断、自动驾驶等关键场景,揭示算法开发中潜藏的伦理风险与技术挑战。通过整合自动化机器学习与联邦学习技术,构建跨数据孤岛的协作框架,同时引入可解释性算法增强模型透明度,确保决策逻辑可追溯、可验证。在模型优化维度,重点解析
- 人工智能的未来发展趋势及其对社会的深远影响
智能计算研究中心
其他
内容概要在当今科技飞速发展的时代,人工智能(AI)已成为推动社会变革的重要力量。本文将探讨人工智能未来的发展趋势,分析其在各个领域的应用前景,尤其是在技术革新、市场需求及伦理挑战等方面。通过对相关趋势的深入分析,我们可以更好地理解人工智能如何重塑劳动力市场、提升生活质量以及推动社会整体进步。探索人工智能的潜力,为未来的发展奠定基础。随着技术的不断进步,人工智能正在经历一场深刻的变革。从机器学习到深
- BagelDB:AI的开源向量数据库
qahaj
人工智能数据库python
BagelDB:AI的开源向量数据库BagelDB(OpenVectorDatabaseforAI)是一个类似于GitHub的AI数据协作平台。用户可以在这里创建、分享和管理向量数据集。BagelDB支持独立开发者的私有项目、企业内部的协作以及数据DAO的公共贡献。技术背景介绍随着人工智能和机器学习的快速发展,各种数据的重要性也在不断凸显。向量数据库作为存储向量化数据的重要工具,越来越受到开发者和
- 使用Hugging Face Text Embeddings Inference进行文本嵌入推理
dgay_hua
python
在自然语言处理中,文本嵌入是一个重要的技术,它将文本转换为可以由机器学习算法处理的数字向量。在这篇文章中,我们将探讨如何使用HuggingFace的TextEmbeddingsInference(TEI)工具包来部署和服务开源文本嵌入和序列分类模型。TEI支持高性能提取,包括常用的嵌入模型如FlagEmbedding、Ember、GTE和E5。技术背景介绍文本嵌入在现代NLP任务中起着关键作用,它
- 阿里云 人工智能与机器学习
HaoHao_010
阿里云云服务器云计算服务器
阿里云的人工智能(AI)与机器学习(ML)服务为企业提供了全面的AI解决方案,帮助用户在多个行业实现数据智能化,提升决策效率,推动业务创新。阿里云通过先进的技术和丰富的工具,支持用户开发、部署和管理AI应用。以下是阿里云在人工智能和机器学习方面的主要产品与服务:1.云上机器学习平台—PaaS服务PAI(PlatformforAI)PAI是阿里云推出的人工智能平台,提供一系列机器学习与深度学习工具和
- AI探索笔记:浅谈人工智能算法分类
安意诚Matrix
机器学习笔记人工智能笔记
人工智能算法分类这是一张经典的图片,基本概况了人工智能算法的现状。这张图片通过三个同心圆展示了人工智能、机器学习和深度学习之间的包含关系,其中人工智能是最广泛的范畴,机器学习是其子集,专注于数据驱动的算法改进,而深度学习则是机器学习中利用多层神经网络进行学习的特定方法。但是随着时代的发展,这张图片表达得也不是太全面了。我更喜欢把人工智能算法做如下的分类:传统机器学习算法-线性回归、逻辑回归、支持向
- Objective-C实现NLP中文分词(附完整源码)
源代码大师
Objective-C实战教程自然语言处理objective-c中文分词
Objective-C实现NLP中文分词实现中文分词(NLP中的重要任务之一)在Objective-C中需要处理文本的切分和识别词语边界。尽管Objective-C在自然语言处理(NLP)领域并不常见,但通过合理的算法设计和数据结构,可以实现基本的中文分词功能。本文将介绍如何使用基于字典的最大匹配算法(MaximumMatchingAlgorithm),例如正向最大匹配(ForwardMaximu
- 【人工智能算法】人工智能算法都包括什么?请详细列出和解释
资源存储库
算法强化学习人工智能算法
目录人工智能算法都包括什么?请详细列出和解释1.机器学习算法(MachineLearningAlgorithms)监督学习算法(SupervisedLearning)无监督学习算法(UnsupervisedLearning)强化学习算法(ReinforcementLearning)2.进化算法(EvolutionaryAlgorithms)3.模拟退火(SimulatedAnnealing)4.粒
- AI笔记——浅谈发展历程
Bqiuer
AIAI笔记人工智能ai
2023年,要说最让人震惊的热点,无疑就是AI技术的大爆发!从1950年的“图灵测试”标志着人工智能雏形的诞生,一些最顶尖的技术团队、技术学科进行研究,到如今几十年的时间。一、AI的历史进程人工智能(ArtificialIntelligence,AI)的历史进程可以追溯到上世纪50年代。1950年代-1960年代:起步阶段1950年,英国数学家艾伦·图灵提出了“图灵测试”,这是第一个旨在检验机器智
- AI产品怎样才能打造出像人类一样聪明和有情商?
AI天才研究院
Python实战DeepSeekR1&大数据AI人工智能大模型AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介随着人工智能技术的飞速发展、算法能力的不断增强、数据集的积累、计算设备的普及,人工智能已经成为各个行业、各个领域的重要突破性技术。然而,面对这一技术带来的巨大变革,如何为用户提供更加人性化的服务,并让人工智能模型对用户输入做出智能回应,则成为了一个长期且艰难的挑战。今天,我们将讨论一些常见的人机交互相关的问题,如语言模型、对话系统、生成模型等,并从中可以窥视到人
- 最全中文对话数据集(不定期更新)
数据猎手小k
人工智能大数据
随着人工智能技术的发展,自然语言处理(NLP)领域中的对话系统逐渐成为研究的热点。为了提升对话系统的性能,需要大量的高质量对话数据来训练和优化模型。然而,中文对话数据相对于英文来说较为稀缺,且质量参差不齐,这限制了中文对话系统的发展。因此,构建大规模、高质量的中文对话数据集成为了一个迫切的需求。一、研究意义1、推动中文NLP发展:大规模高质量的中文对话数据集能够为中文自然语言处理领域的研究提供基础
- Python人工智能学习路线,来自阿里巴巴佛系Python程序员的指南
阿里P6+
2024年程序员学习python人工智能学习
其实,这两方面都是存在的,但都很片面,这里不加赘述。客观地说,数字化、智能化是人类社会发展的趋势,而当下人工智能无疑是一大热门,那是蓝海还是火海?我们回到老道理——水的深度,只有你自己去试试水才知道。当你对上面情况有了初步的了解并想试试水,需要面对的问题是:AI入门容易吗?答案其实是否定的,难!AI领域需要钻研算法原理、大量复杂的公式及符号、无所适从的项目都是劝退一时热度初学者的原因。但对于一个初
- DeepSeek全栈接入指南:从零到生产环境的深度实践
量子纠缠BUG
DeepSeek部署AIDeepSeek人工智能深度学习机器学习
第一章:DeepSeek技术体系全景解析1.1认知DeepSeek技术生态DeepSeek作为新一代人工智能技术平台,构建了覆盖算法开发、模型训练、服务部署的全链路技术栈。其核心能力体现在:1.1.1多模态智能引擎自然语言处理:支持文本生成(NLG)、语义理解(NLU)、情感分析等计算机视觉:提供图像分类、目标检测、OCR识别等CV能力语音交互:包含语音识别(ASR)、语音合成(TTS)及声纹识别
- 微调 LLM (RLHF + DPO)
人工智能
微调LLM(RLHF+DPO)使用强化学习(RL)根据人类反馈微调大语言模型(即RLHF)的方法,以及一种更有效的改进方法(即DPO)。一、GPT-3与InstructGPT2020年,OpenAI发布了GPT-3,这是一种大型语言模型(LLM),只需查看几个示例即可执行任意自然语言处理(NLP)任务。这包括为模型编写巧妙的输入(即提示),使其执行所需的任务(例如翻译、问答和完形填空任务)。尽管G
- 百度安全获得中国信通院深度伪造视频检测服务评估优秀级
安全
近年来深度合成技术迅猛发展的背后,“真实”和“虚假”的界限愈发难以分辨,技术滥用和恶意应用已经引发了一系列风险。随着技术的快速发展,党和国家高度重视深度合成技术的治理工作,先后发布了《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》,旨在加强互联网信息服务深度合成管理,促进深度合成服务健康发展,防范相关安全风险。中国信息通信研究院持续跟进深度合成技术及其应用的发展态势,自201
- AIoT安全与隐私自动化建设:实践与展望
ITPUB-微风
安全自动化运维
随着物联网(IoT)的快速发展,AIoT(人工智能物联网)已成为新时代的技术趋势。然而,随着设备的增多和应用的广泛,AIoT的安全与隐私问题也日益凸显。本文将探讨AIoT安全与隐私自动化建设的实践与展望。一、背景AIoT设备数量的激增带来了诸多安全挑战,如僵尸网络、中间人攻击、隐私泄露等。这些威胁不仅影响设备的正常运行,还可能对用户隐私造成严重损害。因此,建立有效的AIoT安全与隐私保护机制迫在眉
- 消费者产品报告2025-在通用人工智能时代重新获得相关性报告300+份集萃解读|附PDF下载
数据挖掘深度学习机器学习算法
原文链接:https://tecdat.cn/?p=40823在全球经济形势复杂多变、技术革新加速的当下,消费品行业正经历深刻变革。本报告汇总解读基于权威数据,深入剖析该行业在2024-2025年的发展态势,为企业提供市场洞察与策略建议,助力其在通用人工智能时代找准方向、重塑竞争优势。本报告汇总洞察基于文末470份消费者行业研究报告的数据,报告合集已分享在交流群,阅读原文进群和500+行业人士共同
- 在Linux环境下安装和使用Pyenv:详细指南
I'mAlex
Python三方库#Pythonlinux运维服务器pythonpyenv
Pyenv是一个用于管理多个Python版本的强大工具,特别适合在Linux环境下使用。本文将详细介绍如何在Linux系统上安装和使用Pyenv,以便更好地管理Python开发环境。博主简介:现任阿里巴巴嵌入式技术专家,15年工作经验,深耕嵌入式+人工智能领域,精通嵌入式领域开发、技术管理、简历招聘面试。CSDN优质创作者,提供产品测评、学习辅导、简历面试辅导、毕设辅导、项目开发、C/C++/Ja
- 注意力机制(Attention Mechanism)详细分类与介绍
Jason_Orton
分类数据挖掘人工智能
注意力机制(AttentionMechanism)是近年来在深度学习中非常流行的一种技术,特别是在自然语言处理(NLP)、计算机视觉等任务中,具有显著的效果。它的核心思想是模仿人类在处理信息时的注意力分配方式,根据不同部分的重要性给予不同的关注程度。1.注意力机制的背景与动机在传统的深度学习模型(如RNN、CNN等)中,信息处理通常是按照固定的规则和结构进行的,模型对输入的各个部分给予相同的关注。
- 智算中心的核心硬件是什么?
Imagination官方博客
本文来源:游方AI智算中心,作为人工智能时代的关键基础设施,其核心硬件的构成与性能直接影响着智能计算的效率与质量。以下是对智算中心核心硬件的详细阐述:一、AI芯片AI芯片是专门为加速人工智能计算而设计的硬件,能够与各种AI算法协同工作,满足对算力的极高需求。当前主流的AI加速计算芯片包括:1、GPU(图形处理器)GPU是智算中心的算力担当,其强大的并行计算能力使其在深度学习领域大放异彩。GPU芯片
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep