Percolation 渗透算法

Union-Find 并查集算法

解决动态连通性一类问题的一种算法

使用场景:
网络连接判断
变量名等同性
社交网络

例如
Percolation 渗透算法_第1张图片

实现:
Quick-find
Quick-Union
Weighted quick-union
Weighted quick-union with path compression

蒙特卡洛模拟

也称为计算机随机模拟方法,是一种基于”随机数”的计算方法。特点是,可以在随机采样上计算得到近似结果,随着采样的增多,得到的结果是正确结果的概率逐渐加大
例子,蒙特卡罗方法求π。就是画一个正方形和内切圆,随机撒点,数一下点落在园内和正方形内的数量之比,就是二者面积之比π/4。

渗透模型

n*n 个点组成的网格,每个点是 Open 或 Closed 状态。假如最底部的点和最顶端的点连通,就说明这个网格系统是渗透的。
比如图中黑色表示 Closed 状态,白色表示 Open,蓝色表示与顶部连通。所以左图是渗透的,右图不是:
Percolation 渗透算法_第2张图片

应用场景:
判断由绝缘体和金属材料组成的一个物体什么情况可以导电
判断一块多空地形,什么情况可以让水或者油渗透过去

问题

假设每个点是 Open 状态的概率是 p,计算整个系统是渗透的概率。
图片为 20*20、100*100 网格的概率分布:
Percolation 渗透算法_第3张图片Percolation 渗透算法_第4张图片

计算方法概述

利用蒙特卡洛模拟
* 初始化 n*n 全为 Blocked 的网格系统
* 随机 Open 一个点,重复执行,直到整个系统变成渗透的为止
* 上述过程重复 T 次,计算平均值、标准差、96% 置信区间

用 Union-Find 算法判断连通性

增加两个虚拟节点,将问题简化为判断两个虚拟节点之间是否连通
Percolation 渗透算法_第5张图片

增加一个只有顶端虚拟节点的并查集,避免 backwash(其它方法参考:http://www.sigmainfy.com/blog/avoid-backwash-in-percolation.html)
Percolation 渗透算法_第6张图片

代码

Percolation.java

/******************************************************************************
 *  Compilation:  javac-algs4 Percolation.java
 *  Execution:    java-algs4 Percolation < input.txt
 *  Dependencies: None
 *
 *  This program reads standard input.
 *
 *    - Reads the grid size n of the percolation system.
 *    - Creates an n-by-n grid of sites (intially all blocked)
 *    - Reads in a sequence of sites (row i, column j) to open.
 *
 *  After each site is opened, it checks if the system is percolated.
 ******************************************************************************/
import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.WeightedQuickUnionUF;
public class Percolation {
    private int gridLength;
    private boolean[] grid; // true:open, false:blocked
    private WeightedQuickUnionUF wqu; // with virtual top & bottom
    private WeightedQuickUnionUF wqu2; // without virtual bottom
    private int virtualTop;
    // create n-by-n grid, with all sites blocked
    public Percolation(int n) {
        if (n <= 0) {
            throw new IllegalArgumentException("length must be positive");
        }
        gridLength = n;
        virtualTop = gridLength * gridLength;
        grid = new boolean[virtualTop];
        // the last two are virtual top & virtual bottom sites
        wqu = new WeightedQuickUnionUF(virtualTop + 2);
        wqu2 = new WeightedQuickUnionUF(virtualTop + 1);
    }
    private void validateIndecies(int row, int col) {
        if (row <= 0 || row > gridLength)
            throw new IndexOutOfBoundsException("row index out of bounds");
        if (col <= 0 || col > gridLength)
            throw new IndexOutOfBoundsException("col index out of bounds");
    }
    private int xyTo1D(int row, int col) {
        return (row - 1) * gridLength + (col - 1);
    }
    // open site (row, col) if it is not open already
    public void open(int row, int col) {
        validateIndecies(row, col);
        int self = xyTo1D(row, col);
        if (grid[self]) {
            return;
        }
        grid[self] = true;
        if (row == 1) {
            wqu.union(self, virtualTop);
            wqu2.union(self, virtualTop);
        }
        if (row == gridLength) {
            wqu.union(self, virtualTop + 1);
        }
        int other;
        if (row > 1) { // up
            other = xyTo1D(row - 1, col);
            if (grid[other]) {
                wqu.union(self, other);
                wqu2.union(self, other);
            }
        }
        if (row < gridLength) { // down
            other = xyTo1D(row + 1, col);
            if (grid[other]) {
                wqu.union(self, other);
                wqu2.union(self, other);
            }
        }
        if (col > 1) { // left
            other = xyTo1D(row, col - 1);
            if (grid[other]) {
                wqu.union(self, other);
                wqu2.union(self, other);
            }
        }
        if (col < gridLength) { // right
            other = xyTo1D(row, col + 1);
            if (grid[other]) {
                wqu.union(self, other);
                wqu2.union(self, other);
            }
        }
    }
    // is site (row, col) open?
    public boolean isOpen(int row, int col) {
        validateIndecies(row, col);
        return grid[xyTo1D(row, col)];
    }
    // is site (row, col) full?
    public boolean isFull(int row, int col) {
        validateIndecies(row, col);
        return wqu2.connected(virtualTop, xyTo1D(row, col));
    }
    // does the system percolate?
    public boolean percolates() {
        return wqu.connected(virtualTop, virtualTop + 1);
    }
    // test client (optional)
    public static void main(String[] args) {
        /*
        Percolation percolation = new Percolation(0);
        Percolation percolation = new Percolation(1);
        percolation.open(0, 1);
        percolation.open(1, 0);
        */
        /*
        Percolation percolation = new Percolation(2);
        percolation.open(1, 1);
        percolation.open(1, 2);
        for (int i = 1; i <= 2; i++) {
            for(int j = 1; j <= 2; j++) {
                StdOut.println("" + percolation.isFull(i, j) + " " + percolation.isOpen(i, j));
            }
        }
        StdOut.println("percolation is " + percolation.percolates());
        */
        int n = StdIn.readInt();
        Percolation percolation = new Percolation(n);
        while (!StdIn.isEmpty()) {
            int row = StdIn.readInt();
            int col = StdIn.readInt();
            percolation.open(row, col);
        }
        StdOut.println("percolation is " + percolation.percolates());
    }
}

PercolationStats.java

/******************************************************************************
 *  Compilation:  javac-algs4 PercolationStats.java
 *  Execution:    java-algs4 PercolationStats length trails
 *  Dependencies: Percolation.java
 *
 *  This program takes the length of grid and trails.
 *
 ******************************************************************************/
import edu.princeton.cs.algs4.StdRandom;
import edu.princeton.cs.algs4.StdStats;
import edu.princeton.cs.algs4.StdOut;
public class PercolationStats {
    private int gridLength;
    private double[] trailsResult;
    private double resultMean;
    private double resultStddev;
    private double resultconfidenceLo;
    private double resultconfidenceHi;
    // perform trials independent experiments on an n-by-n grid
    public PercolationStats(int n, int trials) {
        if (n <= 0) {
            throw new IllegalArgumentException("length must be positive");
        }
        if (trials <= 0) {
            throw new IllegalArgumentException("trials must be positive");
        }
        gridLength = n;
        if (gridLength == 1) {
            resultMean = 1;
            resultStddev = Double.NaN;
            resultconfidenceLo = Double.NaN;
            resultconfidenceHi = Double.NaN;
        }
        else {
            trailsResult = new double[trials];
            for (int i = 0; i < trials; i++) {
                trailsResult[i] = oneTrial(gridLength);
            }
            resultMean = StdStats.mean(trailsResult);
            resultStddev = StdStats.stddev(trailsResult);
            double diff = (1.96 * resultStddev) / Math.sqrt(trials);
            resultconfidenceLo = resultMean - diff;
            resultconfidenceHi = resultMean + diff;
        }
    }
    private double oneTrial(int length) {
        int openedCount = 0;
        Percolation percolation = new Percolation(length);
        while (!percolation.percolates()) {
            int row = StdRandom.uniform(length) + 1;
            int col = StdRandom.uniform(length) + 1;
            if (!percolation.isOpen(row, col)) {
                percolation.open(row, col);
                openedCount++;
            }
        }
        return (double) openedCount / (length * length);
    }
    // sample mean of percolation threshold
    public double mean() {
        return resultMean;
    }
    // sample standard deviation of percolation threshold
    public double stddev() {
        return resultStddev;
    }
    // low  endpoint of 95% confidence interval
    public double confidenceLo() {
        return resultconfidenceLo;
    }
    // high endpoint of 95% confidence interval
    public double confidenceHi() {
        return resultconfidenceHi;
    }
    // test client
    public static void main(String[] args) {
        int length = Integer.parseInt(args[0]);
        int trials = Integer.parseInt(args[1]);
        PercolationStats percolations = new PercolationStats(length, trials);
        StdOut.println("mean                    = " + percolations.mean());
        StdOut.println("stddev                  = " + percolations.stddev());
        StdOut.println("95% confidence interval = "
                           + percolations.confidenceLo() + ", "
                           + percolations.confidenceHi());
    }
}

-eof-

你可能感兴趣的:(开发)