java并发编程--互斥锁, 读写锁及条件

 

[coolxing按: 转载请注明作者和出处, 如有谬误, 欢迎在评论中指正.] 

 

java.util.concurrent.locks包提供了锁和等待条件的接口和类, 可用于替代JDK1.5之前的同步(synchronized)和监视器机制(主要是Object类的wait(), notify(), notifyAll()方法).

 

互斥锁--Lock接口及其实现类ReentrantLock

所谓互斥锁, 指的是一次最多只能有一个线程持有的锁. 在jdk1.5之前, 我们通常使用synchronized机制控制多个线程对共享资源的访问. 而现在, Lock提供了比synchronized机制更广泛的锁定操作, Lock和synchronized机制的主要区别:

  • synchronized机制提供了对与每个对象相关的隐式监视器锁的访问, 并强制所有锁获取和释放均要出现在一个块结构中, 当获取了多个锁时, 它们必须以相反的顺序释放. synchronized机制对锁的释放是隐式的, 只要线程运行的代码超出了synchronized语句块范围, 锁就会被释放. 而Lock机制必须显式的调用Lock对象的unlock()方法才能释放锁, 这为获取锁和释放锁不出现在同一个块结构中, 以及以更自由的顺序释放锁提供了可能. 以下代码演示了在不同的块结构中获取和释放锁:
public class LockTest {
	private static Lock lock = new ReentrantLock();
	public static void main(String[] args) {
		lock.lock();
		invokeMethod();
	}

	private static void invokeMethod() {
		lock.unlock();
	}
}

  为了确保锁被释放, 通常会采用如下的代码形式:

Lock lock = new ReentrantLock();
// 获取锁
lock.lock();
	try {
		// access the resource protected by this lock
	} finally {
		// 释放锁
		lock.unlock();
	}

  |--void lock(): 执行此方法时, 如果锁处于空闲状态, 当前线程将获取到锁. 相反, 如果锁已经被其他线程持有, 将禁用当前线程, 直到当前线程获取到锁.

|--void unlock(): 执行此方法时, 当前线程将释放持有的锁. 锁只能由持有者释放, 如果线程并不持有锁, 却执行该方法, 可能导致异常的发生.

  • Lock提供了一个非块结构的获取锁尝试--tryLock(), 一个获取可中断锁的尝试--lockInterruptibly()和一个获取超时失效锁的尝试--tryLock(long time, TimeUnit unit).

|--boolean tryLock(): 如果锁可用, 则获取锁, 并立即返回true, 否则返回false. 该方法和lock()的区别在于, tryLock()只是"试图"获取锁, 如果锁不可用, 不会导致当前线程被禁用, 当前线程仍然继续往下执行代码. 而lock()方法则是一定要获取到锁, 如果锁不可用, 就一直等待, 在未获得锁之前,当前线程并不继续向下执行. 通常采用如下的代码形式调用tryLock()方法:

 

   Lock lock = new ReentrantLock();
      if (lock.tryLock()) {
          try {
              // manipulate protected state
          } finally {
              lock.unlock();
          }
      } else {
          // perform alternative actions
      }

此用法可确保如果获取了锁则会释放锁如果未获取锁则不会试图将其释放.

  • Lock的newCondition()方法可以获得与该锁绑定的Condition对象, Condition的详细介绍如下. 

 

条件--Condition

调用Condition对象的相关方法, 可以方便的挂起和唤醒线程. Object对象的wait(), notify(), notifyAll()方法当然也可以做到这一点, 但是Object对象的这些方法存在很不方便的地方--如果多个线程调用了obj的wait()方法而挂起, 那么我们无法做到调用obj的notify()和notifyAll()方法唤醒其中特定的一个线程. 而Condition对象就可以做到这一点. 具体的代码请参见我的上一篇博客http://coolxing.iteye.com/blog/1236696中的解法二部分.

  • void await(): 调用Condition对象的await()方法将导致当前线程被挂起, 并释放该Condition对象所绑定的锁. Condition对象只能通过Lock类的newCondition()方法获取, 因此一个Condition对象必然有一个与其绑定的Lock锁. 调用Condition对象的await()方法的前提是: 当前线程必须持有与该Condition对象绑定的锁, 否则程序可能抛出异常.
  • void signal(): 唤醒一个在该Condition对象上挂起的线程. 如果存在多个线程等待这个Condition对象的唤醒, 则随机选择一个. 线程被唤醒之前, 必须重新获取到锁(与该Condition对象绑定的Lock对象).
  • void signalAll(): 唤醒所有在该Condition对象上挂起的线程. 所有被唤醒的线程将竞争与该Condition对象绑定的锁, 只有获取到锁的线程才能恢复到运行状态.

 

读写锁--ReadWriteLock接口及其实现类ReentrantReadWriteLock

ReentrantReadWriteLock中定义了2个内部类, ReentrantReadWriteLock.ReadLock和ReentrantReadWriteLock.WriteLock, 分别用来代表读取锁和写入锁. ReentrantReadWriteLock对象提供了readLock()和writeLock()方法, 用于获取读取锁和写入锁. 

 

  • 读取锁允许多个reader线程同时持有, 而写入锁最多只能有一个writter线程持有.
  • 读写锁的使用场合: 读取共享数据的频率远大于修改共享数据的频率. 在上述场合下, 使用读写锁控制共享资源的访问, 可以提高并发性能.
  • 如果一个线程已经持有了写入锁, 则可以再持有读写锁. 相反, 如果一个线程已经持有了读取锁, 则在释放该读取锁之前, 不能再持有写入锁.
  • 可以调用写入锁的newCondition()方法获取与该写入锁绑定的Condition对象, 此时与普通的互斥锁并没有什么区别. 但是调用读取锁的newCondition()方法将抛出异常. 

 

使用读写锁的一个例子:

 

public class ReadWriteLockTest {
	private static ReadWriteLock lock = new ReentrantReadWriteLock();
	private static Person person = new Person("David Beckham", true);

	public static void main(String[] args) {
		new Thread() {
			public void run() {
				while(true) {
					try {
						lock.readLock().lock();
						System.out.print("name = " + person.getName());
						System.out.println(", isMan = " + person.isMan());
					} finally {
						lock.readLock().unlock();
					}
				}
			};
		}.start();
		new Thread() {
			public void run() {
				boolean state = true;
				while(true) {
					try {
						lock.writeLock().lock();
						if (state) {
							person.setName("Lady GaGa");
							person.setMan(false);
							state = false;
						} else {
							person.setName("David Beckham");
							person.setMan(true);
							state = true;
						}
						
					} finally {
						lock.writeLock().unlock();
					}
				}
			};
		}.start();
	}
}

class Person {
	private String name;
	private boolean isMan;

	public Person(String name, boolean isMan) {
		this.name = name;
		this.isMan = isMan;
	}

	public String getName() {
		return name;
	}

	public void setName(String name) {
		this.name = name;
	}

	public boolean isMan() {
		return isMan;
	}

	public void setMan(boolean isMan) {
		this.isMan = isMan;
	}
}

不管程序运行多久, 也不会有人妖的出现.

你可能感兴趣的:(java并发)