kears训练中如何实时输出卷积层的结果?

在训练unet模型时,发现预测结果和真实结果几乎完全差距太大,想着打印每层输出的结果查看问题在哪?但是发现kears只是提供了训练完成后在模型测试时输出每层的函数。并没有提供训练时的函数,同时本着不对原有代码进行太大改动。最后实现了这个方法。即新建一个输出节点添加到现有的网络结构里面。

#新建一个打印层。
class PrintLayer(Layer):
	#初始化方法,不须改变
    def __init__(self, **kwargs):
        super(PrintLayer, self).__init__(**kwargs)
	#调用该层时执行的方法
    def call(self, x):
        x = tf.Print(x,[x],message="x is: ",summarize=65536)
        #调用tf的Print方法打印tensor方法,第一个参数为输入的x,第二个参数为要输出的参数,summarize参数为输出的元素个数。
        return x;
        #一定要返回tf.Print()函数返回的变量,不要直接使用传入的变量。
 
#接着在网络中引入
conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
print11 = PrintLayer()(conv9)
conv10 = Conv2D(1, 1, activation = 'sigmoid')(print11)
#PrintLayer层处理的结果一定要在下一层用到,不然不会打印tensor。该结点可以加在任何结点之间。

你可能感兴趣的:(tensorflow)