Spark Streaming 输出数据清洗结果到Mysql

Flume+Kafka+Spark Streaming + Mysql

package util;

import java.awt.List;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Properties;
import java.util.Set;

import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import kafka.serializer.StringDecoder;
import scala.Tuple2;

public class DataClean {
    public static void main(String[] args) throws InterruptedException {

        SparkSession spark = SparkSession.builder().master("local").appName("dataClean").getOrCreate();
        //用SparkSession创建Spark Context
        JavaSparkContext conf = new JavaSparkContext(spark.sparkContext());

        JavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(2));
        Map kafkaParams = new HashMap();
        kafkaParams.put("bootstrap.servers", "vm04:9092,vm05:9092,vm06:9092");
        Set topics = new HashSet();
        topics.add("test_m_brokers");
        JavaPairDStream lines = KafkaUtils.createDirectStream(ssc, String.class, String.class,
                StringDecoder.class, StringDecoder.class, kafkaParams, topics);
        JavaDStream words = lines.map(new Function, String>() {
            public String call(Tuple2 tuple) throws Exception {
                String[] strs = tuple._2.split(",");
                String ids =  strs[9].split("/")[3];
                String tmp = "";
                tmp += strs[1] + "\t" + strs[9] + "\t" + ids + "\t" + strs[11];
                return tmp;
            }
        });
         //words.print();

        words.foreachRDD(rdd -> {
            String url = "jdbc:mysql://vm04:3306/echarts";
            Properties connectionProperties = new Properties();
            connectionProperties.put("user", "root");
            connectionProperties.put("password", "xxxxx");
            connectionProperties.put("driver", "com.mysql.jdbc.Driver");
            JavaRDD ip = rdd.map(new Function() {
                public Row call(String line) throws Exception {
                    String[] tmps = line.split("\t");
                    return RowFactory.create(String.valueOf(tmps[0]),String.valueOf(tmps[1]),
                            String.valueOf(tmps[2]),String.valueOf(tmps[3]));
                }
            });
            ArrayList fields = new ArrayList();
            fields.add(DataTypes.createStructField("ip", DataTypes.StringType, true));
            fields.add(DataTypes.createStructField("video", DataTypes.StringType, true));
            fields.add(DataTypes.createStructField("videoid", DataTypes.StringType, true));
            fields.add(DataTypes.createStructField("device", DataTypes.StringType, true));

            StructType type = DataTypes.createStructType(fields);
            Dataset ipDF = spark.createDataFrame(ip, type);
            ipDF.write().mode("append").jdbc(url, "echarts", connectionProperties);
            //spark.close();
        });
        ssc.start();
        ssc.awaitTermination();

    }
}

你可能感兴趣的:(大数据/Spark)