这个类继承自MessagePassing也就是Convolutional Layers
import torch
from torch.nn import Parameter
from torch_scatter import scatter_add
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import add_remaining_self_loops
from ..inits import glorot, zeros
class GCNConv(MessagePassing):
r"""The graph convolutional operator from the `"Semi-supervised
Classification with Graph Convolutional Networks"
`_ paper
.. math::
\mathbf{X}^{\prime} = \mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}
\mathbf{\hat{D}}^{-1/2} \mathbf{X} \mathbf{\Theta},
where :math:`\mathbf{\hat{A}} = \mathbf{A} + \mathbf{I}` denotes the
adjacency matrix with inserted self-loops and
:math:`\hat{D}_{ii} = \sum_{j=0} \hat{A}_{ij}` its diagonal degree matrix.
Args:
in_channels (int): Size of each input sample.
out_channels (int): Size of each output sample.
improved (bool, optional): If set to :obj:`True`, the layer computes
:math:`\mathbf{\hat{A}}` as :math:`\mathbf{A} + 2\mathbf{I}`.
(default: :obj:`False`)
cached (bool, optional): If set to :obj:`True`, the layer will cache
the computation of :math:`\mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}
\mathbf{\hat{D}}^{-1/2}` on first execution, and will use the
cached version for further executions.
This parameter should only be set to :obj:`True` in transductive
learning scenarios. (default: :obj:`False`)
bias (bool, optional): If set to :obj:`False`, the layer will not learn
an additive bias. (default: :obj:`True`)
normalize (bool, optional): Whether to add self-loops and apply
symmetric normalization. (default: :obj:`True`)
**kwargs (optional): Additional arguments of
:class:`torch_geometric.nn.conv.MessagePassing`.
"""
def __init__(self, in_channels, out_channels, improved=False, cached=False,
bias=True, normalize=True, **kwargs):
super(GCNConv, self).__init__(aggr='add', **kwargs)
self.in_channels = in_channels#输入通道数,也就是X的shape[1]
self.out_channels = out_channels#输出通道数
self.improved = improved#$设置为true时A尖等于A+2I
self.cached = cached#If set to True, the layer will cache the computation of D^−1/2A^D^−1/2 on first execution, and will use the cached version for further executions. This parameter should only be set to True in transductive learning scenarios. (default: False)
self.normalize = normalize#是否添加自环并应用对称归一化。
self.weight = Parameter(torch.Tensor(in_channels, out_channels))
if bias:#如果设置为False,则该层将不会学习加法偏差
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
glorot(self.weight)#glorot函数下面有写,初始化weight矩阵
zeros(self.bias)#zeros函数下面有写,初始化偏置矩阵
self.cached_result = None
self.cached_num_edges = None
@staticmethod
def norm(edge_index, num_nodes, edge_weight=None, improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype,
device=edge_index.device)
fill_value = 1 if not improved else 2
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, edge_weight=None):
""""""
x = torch.matmul(x, self.weight)#将x与权重矩阵相乘
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(
self.node_dim), edge_weight, self.improved, x.dtype)
else:
norm = edge_weight
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
return self.propagate(edge_index, x=x, norm=norm)
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j if norm is not None else x_j
def update(self, aggr_out):
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.in_channels,
self.out_channels)
def glorot(tensor):#inits.py中
if tensor is not None:
stdv = math.sqrt(6.0 / (tensor.size(-2) + tensor.size(-1)))
tensor.data.uniform_(-stdv, stdv)#将tensor的值设置为-stdv, stdv之间
def zeros(tensor):
if tensor is not None:
tensor.data.fill_(0)