Hive(1)-Hive体系结构

1、Hive介绍
Hive是一个基于Hadoop的开源数据仓库工具,用于存储和处理海量结构化数据。它是Facebook 2008年8月开源的一个数据仓库框架,提供了类似于SQL语法的HQL语句作为数据访问接口,Hive有如下优缺点:
l 优点:
1.Hive 使用类SQL 查询语法, 最大限度的实现了和SQL标准的兼容,大大降低了传统数据分析人员学习的曲线;
2.使用JDBC 接口/ODBC接口,开发人员更易开发应用;
3.以MR 作为计算引擎、HDFS 作为存储系统,为超大数据集设计的计算/ 扩展能力;
4.统一的元数据管理(Derby、MySql等),并可与Pig 、Presto 等共享;
l 缺点:
1.Hive 的HQL 表达的能力有限,有些复杂运算用HQL 不易表达;
2.由于Hive自动生成MapReduce 作业, HQL 调优困难;
3.粒度较粗,可控性差

2 Hive运行架构
Hive(1)-Hive体系结构_第1张图片
由上图可知,Hadoop的MapReduce是Hive架构的根基。Hive架构包括如下组件:CLI(Command Line Interface)、JDBC/ODBC、Thrift Server、WEB GUI、Metastore和Driver(Complier、Optimizer和Executor),这些组件分为两大类:服务端组件和客户端组件。
2.1 服务端组件:
Driver组件:该组件包括Complier、Optimizer和Executor,它的作用是将HiveQL(类SQL)语句利用解释器、编译器、优化器完成HQL查询语句从词法分析、语法分析、编译、优化,生成查询计划。生成的查询计划存储在HDFS中,并在随后有MapReduce调用执行。

Metastore组件:元数据服务组件,这个组件存储Hive的元数据,Hive的元数据存储在关系数据库里,Hive支持的关系数据库有Derby和Mysql。元数据对于Hive十分重要,因此Hive支持把Metastore服务独立出来,安装到远程的服务器集群里,从而解耦Hive服务和Metastore服务,保证Hive运行的健壮性;Hive中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。

Thrift服务:Thrift是Facebook开发的一个软件框架,它用来进行可扩展且跨语言的服务的开发,Hive集成了该服务,能让不同的编程语言调用Hive的接口。

2.2 客户端组件:
CLI:Command Line Interface,命令行接口。
Thrift客户端:上面的架构图里没有写上Thrift客户端,但是Hive架构的许多客户端接口是建立在Thrift客户端之上,包括JDBC和ODBC接口。
WEBGUI:Hive客户端提供了一种通过网页的方式访问Hive所提供的服务。这个接口对应Hive的HWI组件(Hive Web Interface),使用前要启动HWI服务。

3.Hive的执行原理
Hive(1)-Hive体系结构_第2张图片

Hive构建在Hadoop之上,
(1)HQL中对查询语句的解释、优化、生成查询计划是由Hive完成的
(2)所有的数据都是存储在hadoop中
(3)查询计划被转化为MapReduce任务,在Hadoop中执行(有些查询没有MR任务,如:select * from table)
(4)Hadoop和Hive都是用UTF-8编码的

4.三种部署模式
4.1 单用户模式
此模式连接到一个In-Memory 的数据库Derby,一般用于Unit Test。
Hive(1)-Hive体系结构_第3张图片
4.2 多用户模式
通过网络连接到一个数据库中,是最经常使用到的模式。
Hive(1)-Hive体系结构_第4张图片
4.3 远程服务器模式
用于非Java客户端访问元数据库,在服务器端启动MetaStoreServer,客户端利用Thrift协议通过MetaStoreServer访问元数据库。
Hive(1)-Hive体系结构_第5张图片

5 Hive数据模型
Hive没有专门的数据存储格式,用户可以自由的组织Hive中的表,只需要在创建表的时候告诉Hive数据中的列分隔符和行分隔符,Hive就可以解析数据。Hive中所有的数据都存储在HDFS中,存储结构主要包括数据库、文件、表和视图。Hive中包含以下数据模型:Table内部表,External Table外部表,Partition分区,Bucket桶。Hive默认可以直接加载文本文件,还支持sequence file 、RCFile。
5.1 内部表
Hive的内部表与数据库中的Table在概念上是类似。每一个Table在Hive中都有一个相应的目录存储数据。例如一个表tbInner,它在HDFS中的路径为/user/hive/warehouse/tbInner,其中/user/hive/warehouse是在hive-site.xml中由${hive.metastore.warehouse.dir} 指定的数据仓库的目录,所有的Table数据(不包括External Table)都保存在这个目录中。内部表删除时,元数据与数据都会被删除。
内部表简单示例:
创建数据文件:test_inner_table.txt
创建表:create table test_inner_table (key string);
加载数据:LOAD DATA LOCAL INPATH ‘filepath’ INTO TABLE test_inner_table;
查看数据:select * from test_inner_table;
删除表:drop table test_inner_table;
5.2. 外部表
外部表指向已经在HDFS中存在的数据,并可以创建Partition。它和内部表在元数据的组织上是相同的,而实际数据的存储则有较大的差异。内部表的创建过程和数据加载过程这两个过程可以分别独立完成,也可以在同一个语句中完成,在加载数据的过程中,实际数据会被移动到数据仓库目录中;之后对数据对访问将会直接在数据仓库目录中完成。删除表时,表中的数据和元数据将会被同时删除。而外部表只有一个过程,加载数据和创建表同时完成(CREATE EXTERNAL TABLE ……LOCATION),实际数据是存储在LOCATION后面指定的 HDFS 路径中,并不会移动到数据仓库目录中。当删除一个External Table时,仅删除该链接。
外部表简单示例:
创建数据文件:test_external_table.txt
创建表:create external table test_external_table (key string);
加载数据:LOAD DATA INPATH ‘filepath’ INTO TABLE test_inner_table;
查看数据:select * from test_external_table;
删除表:drop table test_external_table;
5.3 分区
Partition对应于数据库中的Partition列的密集索引,但是Hive中Partition的组织方式和数据库中的很不相同。在Hive中,表中的一个Partition对应于表下的一个目录,所有的Partition的数据都存储在对应的目录中。例如pvs表中包含ds和city两个Partition,则
对应于ds = 20090801, ctry = US 的HDFS子目录为/user/hive/warehouse/pvs/ds=20090801/ctry=US;
对应于 ds = 20090801, ctry = CA 的HDFS子目录为/user/hive/warehouse/pvs/ds=20090801/ctry=CA。
分区表简单示例:
创建数据文件:test_partition_table.txt
创建表:create table test_partition_table (key string) partitioned by (dt string);
加载数据:LOAD DATA INPATH ‘filepath’ INTO TABLE test_partition_table partition (dt=‘2006’);
查看数据:select * from test_partition_table;
删除表:drop table test_partition_table;
5.4 桶
Buckets是将表的列通过Hash算法进一步分解成不同的文件存储。它对指定列计算Hash,根据Hash值切分数据,目的是为了并行,每一个Bucket对应一个文件。例如将user列分散至32个bucket,首先对user列的值计算Hash,对应Hash值为0的HDFS目录为/user/hive/warehouse/pvs/ds=20090801/ctry=US/part-00000;Hash值为20的HDFS目录为/user/hive/warehouse/pvs/ds=20090801/ctry=US/part-00020。如果想应用很多的Map任务这样是不错的选择。
桶的简单示例:
创建数据文件:test_bucket_table.txt
创建表:create table test_bucket_table (key string) clustered by (key) into 20 buckets;
加载数据:LOAD DATA INPATH ‘filepath’ INTO TABLE test_bucket_table;
查看数据:select * from test_bucket_table; set hive.enforce.bucketing = true;

6. Hive的视图
视图与传统数据库的视图类似。视图是只读的,它基于的基本表,如果改变,数据增加不会影响视图的呈现;如果删除,会出现问题。如果不指定视图的列,会根据select语句后的生成。

7. Hive数据类型
Hive支持两种数据类型,一类叫原子数据类型,一类叫复杂数据类型。
7.1 原子数据类型
包括数值型、布尔型和字符串类型,具体如下表所示:
Hive(1)-Hive体系结构_第6张图片

由上表我们看到Hive不支持日期类型,在Hive里日期都是用字符串来表示的,而常用的日期格式转化操作则是通过自定义函数进行操作。
Hive是用Java开发的,Hive里的基本数据类型和java的基本数据类型也是一一对应的,除了String类型。有符号的整数类型:TINYINT、SMALLINT、INT和BIGINT分别等价于Java的Byte、Short、Int和Long原子类型,它们分别为1字节、2字节、4字节和8字节有符号整数。Hive的浮点数据类型FLOAT和DOUBLE,对应于Java的基本类型Float和Double类型。而Hive的BOOLEAN类型相当于Java的基本数据类型Boolean。对于Hive的String类型相当于数据库的Varchar类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它可以存储2GB的字符数。
7.2 复杂数据类型
包括数组(ARRAY)、映射(MAP)和结构体(STRUCT)

8 Hive与关系数据库的区别
由于Hive采用了SQL的查询语言HQL,因此很容易将Hive理解为数据库。其实从结构上来看,Hive和数据库除了拥有类似的查询语言,再无类似之处。数据库可以用在Online的应用中,但是Hive是为数据仓库而设计的,清楚这一点,有助于从应用角度理解Hive的特性。
Hive和数据库的比较如下表:


    Hive        RDBMS 
查询语言    HQL     SQL
数据存储    HDFS    Raw Device or Local FS 
数据格式    用户定义 系统决定
数据更新    不支持   支持
索引       无        有
执行  MapReduce   Executor
执行延迟    高       低
数据规模    大       小
可扩展性    高       低

(1)查询语言。由于 SQL 被广泛的应用在数据仓库中,因此专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。
(2)数据存储位置。Hive是建立在Hadoop之上的,所有Hive的数据都是存储在HDFS中的。而数据库则可以将数据保存在块设备或者本地文件系统中。
(3)数据格式。Hive中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、”\t”、”\x001″)、行分隔符(”\n”)以及读取文件数据的方法(Hive中默认有三个文件格式TextFile,SequenceFile以及RCFile)。由于在加载数据的过程中,不需要从用户数据格式到Hive定义的数据格式的转换,因此,Hive在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的HDFS目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。
(4)数据更新。由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用INSERT INTO … VALUES添加数据,使用UPDATE … SET修改数据。
(5)索引。之前已经说过,Hive在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些Key建立索引。Hive要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于MapReduce的引入, Hive可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了Hive不适合在线数据查询。
(6)执行。Hive中大多数查询的执行是通过Hadoop提供的MapReduce来实现的(类似select * from tbl的查询不需要MapReduce)。而数据库通常有自己的执行引擎。
(7)执行延迟。之前提到,Hive在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致Hive执行延迟高的因素是MapReduce框架。由于MapReduce本身具有较高的延迟,因此在利用MapReduce执行Hive查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。
(8)可扩展性。由于Hive是建立在Hadoop之上的,因此Hive的可扩展性是和Hadoop的可扩展性是一致的(世界上最大的Hadoop集群在Yahoo!,2009年的规模在4000台节点左右)。而数据库由于ACID语义的严格限制,扩展行非常有限。目前最先进的并行数据库Oracle在理论上的扩展能力也只有100台左右。
(9)数据规模。由于Hive建立在集群上并可以利用MapReduce进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。

你可能感兴趣的:(Hive(1)-Hive体系结构)