CVPR 2020 全部论文 分类汇总和打包下载

CVPR 2020 共收录 1470篇文章,根据当前的公布情况,人工智能学社整理了以下约100篇,分享给读者。

代码开源情况:详见每篇注释,当前共15篇开源。(持续更新中,可关注了解)。

算法主要领域:图像与视频处理,图像分类&检测&分割、视觉目标跟踪、视频内容分析、人体姿态估计、模型加速、网络架构搜索(NAS)、生成对抗(GAN)、光学字符识别(OCR)、人脸识别、三维重建等方向。 目录如下:

CVPR 2020 全部论文 分类汇总和打包下载_第1张图片
附赠小彩蛋 *PyTorch 1.4 文档 强化学习文档 ScikitLearn文档,全是最新版~~~~ 关注后手机端阅读 ~~~*

总目录

CVPR 2020 全部论文 分类汇总和打包下载_第2张图片

图像处理

  1. Deep Image Harmonization via Domain Verification
    论文:https://arxiv.org/abs/1911.13239
    代码:https://github.com/bcmi/Image_Harmonization_Datasets

  2. Learning to Shade Hand-drawn Sketches
    论文:https://arxiv.org/abs/2002.11812

  3. Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
    论文:https://arxiv.org/abs/2002.11297

  4. Single Image Reflection Removal through Cascaded Refinement
    论文:https://arxiv.org/abs/1911.06634

  5. RoutedFusion: Learning Real-time Depth Map Fusion
    论文:https://arxiv.org/pdf/2001.04388.pdf

图像分类

  1. Towards Robust Image Classification Using Sequential Attention Models
    论文:https://arxiv.org/abs/1912.02184

  2. Self-training with Noisy Student improves ImageNet classification
    论文:https://arxiv.org/abs/1911.04252

  3. Image Matching across Wide Baselines: From Paper to Practice
    论文:https://arxiv.org/abs/2003.01587

  4. Improved Few-Shot Visual Classification
    论文:https://arxiv.org/pdf/1912.03432.pdf

  5. A General and Adaptive Robust Loss Function
    论文:https://arxiv.org/abs/1701.03077

  6. Making Better Mistakes: Leveraging Class Hierarchies with Deep Networks
    论文:https://arxiv.org/abs/1912.09393

目标检测和分割

  1. Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
    论文:https://arxiv.org/abs/1908.01998

  2. Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
    论文:https://arxiv.org/abs/1912.02424
    代码:https://github.com/sfzhang15/ATSS

  3. Semi-Supervised Semantic Image Segmentation with Self-correcting Networks
    论文:https://arxiv.org/abs/1811.07073

  4. Deep Snake for Real-Time Instance Segmentation
    论文:https://arxiv.org/abs/2001.01629

  5. SketchGCN: Semantic Sketch Segmentation with Graph Convolutional Networks
    论文:https://arxiv.org/abs/2003.00678

  6. xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3D Semantic Segmentation
    论文:https://arxiv.org/abs/1911.12676

  7. CenterMask : Real-Time Anchor-Free Instance Segmentation
    论文:https://arxiv.org/abs/1911.06667
    代码:https://github.com/youngwanLEE/CenterMask

  8. PolarMask: Single Shot Instance Segmentation with Polar Representation
    论文:https://arxiv.org/abs/1909.13226
    代码:https://github.com/xieenze/PolarMask

  9. BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation
    论文:https://arxiv.org/abs/2001.00309

视觉目标跟踪

  1. ROAM: Recurrently Optimizing Tracking Model
    论文:https://arxiv.org/abs/1907.12006

视频内容分析(理解)

  1. Hierarchical Conditional Relation Networks for Video Question Answering
    论文:https://arxiv.org/abs/2002.10698

  2. Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications
    论文:https://arxiv.org/abs/2003.01455
    代码:https://github.com/bbrattoli/ZeroShotVideoClassification

  3. Action Modifiers:Learning from Adverbs in Instructional Video
    论文:https://arxiv.org/abs/1912.06617

  4. Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning
    论文:https://arxiv.org/abs/2003.00392

  5. Blurry Video Frame Interpolation
    论文:https://arxiv.org/abs/2002.12259

  6. Object Relational Graph with Teacher-Recommended Learning for Video Captioning
    论文:https://arxiv.org/abs/2002.11566

  7. Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs
    论文:https://arxiv.org/abs/2003.00387

  8. Learning Representations by Predicting Bags of Visual Words
    论文:https://arxiv.org/abs/2002.12247

  9. Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
    论文:https://arxiv.org/abs/2002.11616

人体关键点检测和姿态估计

  1. Distribution-Aware Coordinate Representation for Human Pose Estimation
    论文:https://arxiv.org/abs/1910.06278
    代码:https://github.com/ilovepose/DarkPose

  2. VIBE: Video Inference for Human Body Pose and Shape Estimation
    论文:https://arxiv.org/abs/1912.05656
    代码:https://github.com/mkocabas/VIBE

  3. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation
    论文:https://arxiv.org/abs/1911.07524

  4. Optimal least-squares solution to the hand-eye calibration problem
    论文:https://arxiv.org/abs/2002.10838

  5. Distribution Aware Coordinate Representation for Human Pose Estimation
    论文:https://arxiv.org/abs/1910.06278

  6. D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry
    论文:https://arxiv.org/abs/2003.01060

  7. Multi-Modal Domain Adaptation for Fine-Grained Action Recognition
    论文:https://arxiv.org/abs/2001.09691

  8. PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose Estimation
    论文:https://arxiv.org/abs/1911.04231

  9. 4D Association Graph for Realtime Multi-person Motion Capture Using Multiple Video Cameras
    论文:https://arxiv.org/abs/2002.12625

模型轻量化和加速

  1. GPU-Accelerated Mobile Multi-view Style Transfer
    论文:https://arxiv.org/abs/2003.00706

神经网络架构设计和搜索NAS

  1. GhostNet: More Features from Cheap Operations
    论文:https://arxiv.org/abs/1911.11907
    代码:https://github.com/iamhankai/ghostnet

  2. CARS: Contunuous Evolution for Efficient Neural Architecture Search
    论文:https://arxiv.org/pdf/1909.04977.pdf
    代码:https://github.com/huawei-noah/CARS

  3. Visual Commonsense R-CNN
    论文:https://arxiv.org/abs/2002.12204

  4. Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral
    论文:https://arxiv.org/abs/2003.01826

  5. AdderNet: Do We Really Need Multiplications in Deep Learning?
    论文:https://arxiv.org/pdf/1912.13200

  6. Filter Grafting for Deep Neural Networks
    论文:https://arxiv.org/pdf/2001.05868.pdf

生成对抗GAN

  1. Your Local GAN: Designing Two Dimensional Local Attention Mechanisms for Generative Models
    论文:https://arxiv.org/abs/1911.12287
    代码:https://github.com/giannisdaras/ylg

  2. MSG-GAN: Multi-Scale Gradient GAN for Stable Image Synthesis
    论文:https://arxiv.org/abs/1903.06048

  3. Robust Design of Deep Neural Networks against Adversarial Attacks based on Lyapunov Theory
    论文:https://arxiv.org/abs/1911.04636

三维点云&3D重建

  1. PointAugment: an Auto-Augmentation Framework for Point Cloud Classification
    论文:https://arxiv.org/abs/2002.10876
    代码:https://github.com/liruihui/PointAugment/

  2. PF-Net: Point Fractal Network for 3D Point Cloud Completion
    论文:https://arxiv.org/abs/2003.00410

  3. Learning multiview 3D point cloud registration
    论文:https://arxiv.org/abs/2001.05119

  4. Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes from a Single Image
    论文:https://arxiv.org/abs/2002.12212

  5. In Perfect Shape: Certifiably Optimal 3D Shape Reconstruction from 2D Landmarks
    论文:https://arxiv.org/pdf/1911.11924.pdf

  6. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
    论文:https://arxiv.org/abs/1911.11236

  7. C-Flow: Conditional Generative Flow Models for Images and 3D Point Clouds
    论文:https://arxiv.org/abs/1912.07009

  8. Representations, Metrics and Statistics For Shape Analysis of Elastic Graphs
    论文:https://arxiv.org/abs/2003.00287

  9. Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion
    论文:https://arxiv.org/abs/2003.01456

光学字符识别OCR

  1. ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network
    论文:https://arxiv.org/abs/2002.10200
    代码:https://github.com/Yuliang-Liu/bezier_curve_text_spotting,https://github.com/aim-uofa/adet

迁移学习

  1. Meta-Transfer Learning for Zero-Shot Super-Resolution
    论文:https://arxiv.org/abs/2002.12213

  2. Transferring Dense Pose to Proximal Animal Classes
    论文:https://arxiv.org/abs/2003.00080

弱监督 & 无监督学习

  1. Unsupervised Reinforcement Learning of Transferable Meta-Skills for Embodied Navigation
    论文:https://arxiv.org/abs/1911.07450

  2. Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
    论文:https://arxiv.org/abs/2003.01460

  3. Rethinking the Route Towards Weakly Supervised Object Localization
    论文:https://arxiv.org/abs/2002.11359

  4. NestedVAE: Isolating Common Factors via Weak Supervision
    论文:https://arxiv.org/abs/2002.11576

人脸识别

  1. Towards Universal Representation Learning for Deep Face Recognition
    论文:https://arxiv.org/abs/2002.11841

  2. Suppressing Uncertainties for Large-Scale Facial Expression Recognition
    论文:https://arxiv.org/abs/2002.10392
    代码:https://github.com/kaiwang960112/Self-Cure-Network

  3. Face X-ray for More General Face Forgery Detection
    论文:https://arxiv.org/pdf/1912.13458.pdf

图神经网络GNN

  1. Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction
    论文:https://arxiv.org/abs/2002.11927

  2. Bundle Adjustment on a Graph Processor
    论文:https://arxiv.org/abs/2003.03134
    代码:https://github.com/joeaortiz/gbp

视觉 & 语言 混合任务研究

  1. Towards Learning a Generic Agent for Vision-and-Language Navigation via Pre-training
    论文:https://arxiv.org/abs/2002.10638
    代码:https://github.com/weituo12321/PREVALENT

  2. 12-in-1: Multi-Task Vision and Language Representation Learning
    论文:https://arxiv.org/abs/1912.02315

  3. Hierarchical Conditional Relation Networks for Video Question Answering
    论文:https://arxiv.org/abs/2002.10698

其他问题研究

  1. What it Thinks is Important is Important: Robustness Transfers through Input Gradients
    论文:https://arxiv.org/abs/1912.05699

  2. Holistically-Attracted Wireframe Parsing
    论文:https://arxiv.org/abs/2003.01663

  3. Attentive Context Normalization for Robust Permutation-Equivariant Learning
    论文:https://arxiv.org/abs/1907.02545

  4. ClusterFit: Improving Generalization of Visual Representations
    论文:https://arxiv.org/abs/1912.03330

  5. Learning in the Frequency Domain
    论文:https://arxiv.org/abs/2002.12416

  6. A Characteristic Function Approach to Deep Implicit Generative Modeling
    论文:https://arxiv.org/abs/1909.07425

  7. Auto-Encoding Twin-Bottleneck Hashing
    论文:https://arxiv.org/abs/2002.11930

论文打包下载地址

链接:https://pan.baidu.com/s/1lo3smbFWiBSNnut9JssYaQ
提取码:公众号内回复 cvpr2020

论文包中有彩蛋一枚~~~~

你可能感兴趣的:(人工智能,计算机视觉)