OpenCV之七段数码管识别(含代码)

1 背景

利用opencv识别数码管,采用传统的穿线法,前提是利用深度学习目标检测的方法,在机柜中将数码管区域切割出来,然后再对切割出来的区域进行识别,判断数字是多少。切割出来的形状如图所示:

OpenCV之七段数码管识别(含代码)_第1张图片

数码管各段表示为

OpenCV之七段数码管识别(含代码)_第2张图片

2 识别思路

先对数码管进行灰度化和二值化,将数字变为255,背景变为0,然后利用穿线法,对abcdefg7个区域依次穿线,判断是否有255的值,有则表示该区域高亮,最后结合7个区域的高亮信息,综合判断数字是多少

    a    b    c    d    e    f    g    result  
0   √    √    √    √    √    √           63
1        √    √                          6
2   √    √         √    √         √      91
3   √    √    √    √              √      79
4        √    √              √    √      102
5   √         √    √         √    √      109
6   √         √    √    √    √    √      125
7   √    √    √                          7
8   √    √    √    √    √    √    √      127
9   √    √    √              √    √      103

3 灰度化

opencv有自带的灰度化函数cv2.cvtColor(),但是在使用过程中发现,对于一些整体亮度低的数码管灰度化后,会丢失数字信息,看不出来哪段亮,考虑到数码管都是红色的,红色通道的数据最重要,因此设计了一个自己灰度化的函数

def tomygray(image):
    height = image.shape[0]
    width = image.shape[1]
    gray = np.zeros((height, width, 1), np.uint8)
    for i in range(height):
        for j in range(width):
            # pixel = max(image[i,j][0], image[i,j][1], image[i,j][2])
            pixel = 0.0 * image[i, j][0] + 0.0 * image[i, j][1] + 1 * image[i, j][2]
            gray[i, j] = pixel
    return gray  

4 二值化

opencv有多种二值化的方法,主要包括固定阈值和自适应阈值的方法,具体介绍可看《OpenCV之阈值化操作总结》

自适应阈值主要适用于一张图片中亮度不一样的情况,而对于我们的数码管来说,由于大小很小,基本上没有亮度变化,因此使用固定阈值的方法即可。函数原型如下

ret, dst = cv2.threshold(src, thresh, maxval, type)

函数最重要的部分是thresh值的设置,由于不同图片的数码管亮度不同,不可以选择同一个阈值,需要分别计算每张图片的固定阈值,计算阈值有很多方法,我用到的方法有以下两种

4.1 统计直方图

统计直方图中像素的分布情况,根据数量最多的像素值来设置一个阈值(下边的参数都是调试效果比较好的值,自己可根据具体情况来设置)

hist = cv2.calcHist([image_gray], [0], None, [256], [0,256])
#plt.hist(hist.ravel(), 256, [0,256])
#plt.savefig(filename + "_hist.png")
#plt.show()    
min_val, max_val, min_index, max_index = cv2.minMaxLoc(hist)              
ret, image_bin = cv2.threshold(image_gray, int(max_index[1])-7, 255, 
                               cv2.THRESH_BINARY)

4.2 计算平均值

计算灰度图的平均像素值,根据平均值设定阈值

mean,stddev = cv2.meanStdDev(image_gray)
ret, image_bin = cv2.threshold(image_gray, meanvalue + 65, 255, 
                               cv2.THRESH_BINARY)

5 穿线法

得到二值化的图像后,将图像进行分割,切成一个一个的数字,然后每个都用穿线法来判断值是多少

def TubeIdentification(filename, num, image):
    tube = 0
    tubo_roi = [
         [image.shape[0] * 0/3, image.shape[0] * 1/3, image.shape[1] * 1/2, 
                                                      image.shape[1] * 1/2],
         [image.shape[0] * 1/3, image.shape[0] * 1/3, image.shape[1] * 2/3, 
                                                      image.shape[1] - 1  ],
         [image.shape[0] * 2/3, image.shape[0] * 2/3, image.shape[1] * 2/3, 
                                                      image.shape[1] - 1  ],
         [image.shape[0] * 2/3, image.shape[0] -1   , image.shape[1] * 1/2, 
                                                      image.shape[1] * 1/2],
         [image.shape[0] * 2/3, image.shape[0] * 2/3, image.shape[1] * 0/3, 
                                                      image.shape[1] * 1/3],
         [image.shape[0] * 1/3, image.shape[0] * 1/3, image.shape[1] * 0/3, 
                                                      image.shape[1] * 1/3],
         [image.shape[0] * 1/3, image.shape[0] * 2/3, image.shape[1] * 1/2, 
                                                      image.shape[1] * 1/2]] 
    i = 0
    while(i < 7):
        if(Iswhite(image, int(tubo_roi[i][0]), int(tubo_roi[i][1]), 
            int(tubo_roi[i][2]),int(tubo_roi[i][3]))):
            tube = tube + pow(2,i)
            
        cv2.line(image, ( int(tubo_roi[i][3]),int(tubo_roi[i][1])), 
                (int(tubo_roi[i][2]), int(tubo_roi[i][0])),                
                (255,0,0), 1)                       
        i += 1

    if(tube==63):
        onenumber = 0
    elif(tube==6):
        onenumber = 1
    elif(tube==91):
        onenumber = 2
    elif(tube==79):
        onenumber = 3
    elif(tube==102 or tube==110):
    #110是因为有干扰情况
        onenumber = 4
    elif(tube==109):
        onenumber = 5
    elif(tube==125):
        onenumber = 6
    elif(tube==7):
        onenumber = 7
    elif(tube==127):
        onenumber = 8
    elif(tube==103):
        onenumber = 9
    else:
        onenumber = -1 
               
    cv2.imwrite(filename + '_' + str(num) + '_' + str(onenumber) + '.png', image)
    return onenumber      

def Iswhite(image, row_start, row_end, col_start, col_end):
    white_num = 0
    j=row_start
    i=col_start

    while(j <= row_end):
        while(i <= col_end):
            if(image[j][i] == 255):                
                white_num+=1
            i+=1
        j+=1
        i=col_start
    #print('white num is',white_num)
    if(white_num >= 5):
        return True
    else:
        return False

6 识别主程序

def digitalrec(image):  
    filename = str(image).split(".jpg", 1)[0]
    image_org = cv2.imread(image)

    height = image_org.shape[0]
    width = image_org.shape[1]
            
    #transe image to gray
    #image_gray = cv2.cvtColor(image_org, cv2.COLOR_RGB2GRAY)    
    image_gray = tomygray(image_org)    
    cv2.imwrite(filename + '_gray.png',image_gray) 
    
    meanvalue = image_gray.mean()   
    if meanvalue >= 200:                
        hist = cv2.calcHist([image_gray], [0], None, [256], [0,256])
        #plt.hist(hist.ravel(), 256, [0,256])
        #plt.savefig(filename + "_hist.png")
        #plt.show()    
        min_val, max_val, min_index, max_index = cv2.minMaxLoc(hist)              
        ret, image_bin = cv2.threshold(image_gray, int(max_index[1])-7, 255, 
                                       cv2.THRESH_BINARY)
    else:                                       
        mean,stddev = cv2.meanStdDev(image_gray)
        ret, image_bin = cv2.threshold(image_gray, meanvalue + 65, 255, 
                                       cv2.THRESH_BINARY)
                              
        #image_bin = cv2.adaptiveThreshold(image_gray, 255, 
        #                                  cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
        #                                  cv2.THRESH_BINARY, 11, 
        #                                  0)    
        
    x, y, w, h = cv2.boundingRect(image_bin)
    image_bin = image_bin[max(y-5,0) : h+10, max(x-5,0) : w+10]                                                
    cv2.imwrite(filename + '_bin.png',image_bin) 
    
    #split number and identify it 
    num = 0
    result = ''
    while True:    
        if(num < 3):
            roi = image_bin[0: height, int(width / 3 * num): 
                                         int(width / 3 * (num + 1))]
            onenumber = TubeIdentification(filename, num, roi)
            if(onenumber == -1):
                result += "0"
            else:
                result += str(onenumber)
            num += 1
        else:
            break
    print("picture of %s detect result is %s"%(filename,result))
    return result

7 识别效果

OpenCV之七段数码管识别(含代码)_第3张图片

8 展望

上边介绍的方法可以实现数码管的识别,但是由于有很多对像素的操作,比较耗时,平均识别一张图片需要2s左右,而且使用传统的方法来识别数码管,涉及到很多参数的设置与调试,鲁棒性不强,尤其是在灰度化和二值化的时候,参数设置很关键。

最好的解决方法是可以利用深度学习的方法来识别,提高识别率,有时间的话会尝试新的方法来解决。

你可能感兴趣的:(Python,OpenCV)