- 卷积神经网络
亿只小灿灿
Python算法与数据结构人工智能cnn人工智能神经网络
一、引言在当今人工智能的浪潮中,卷积神经网络(ConvolutionalNeuralNetwork,CNN)无疑是一颗璀璨的明星。它在图像识别、语音处理、自然语言处理等众多领域取得了巨大的成功,极大地推动了人工智能技术的发展。那么,什么是卷积神经网络?它的算法原理是什么?本文将深入探讨这些问题,并通过Python代码实现一个简单的卷积神经网络,以帮助读者更好地理解和掌握这一强大的技术。二、卷积神经
- WebRTC 语音激活检测(VAD)算法
u013250861
Audiowebrtc算法语音识别
语音激活检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率。激活检测属于语音处理系统的前端操作,在语音检测领域意义重大。但是目前的语音激活检测,尤其是检测人声开始和结束的端点始终是属于技术难点,各家公司始终处于能判断,但是不敢保证判别准确性的阶段。通常搭建机器人聊天系统主要包括以下三个方面:语音转文字(ASR/STT)语义内容(NLU/NLP)文字转语音(TTS)
- AI芯片设计与神经网络加速
华清远见成都中心
人工智能神经网络深度学习
随着人工智能技术的飞速发展,神经网络在图像识别、语音处理、自然语言理解等众多领域取得了显著成就。然而,神经网络的大规模计算需求对传统计算芯片提出了严峻挑战。AI芯片应运而生,其设计目的便是为神经网络提供高效的计算支持,实现神经网络的加速运行。深入研究AI芯片设计与神经网络加速技术,对于推动人工智能技术的广泛应用和进一步发展具有重要意义。一、AI芯片设计基础·计算架构:是AI芯片设计的核心。常见的计
- 语音活动检测模型SileroVAD
大囚长
大模型人工智能
SileroVAD是一款专注于语音活动检测(VAD)的轻量级开源模型,凭借其高效率、低延迟和跨平台特性,成为实时语音处理系统的核心组件。一、核心功能与技术优势轻量高效SileroVAD模型体积仅1.8MB,支持1ms内处理30ms音频块,适用于边缘设备实时处理。其推理速度在单线程CPU上可达2-3倍于PyTorch版本(ONNX优化后),且支持批量处理以提升吞吐量。高精度检测基于深度学习(CNN/
- sherpa-onnx开源语音处理框架研究报告:从技术解析到应用实践
chanalbert
AI开源分享开源pythonc++java
1项目概述与技术背景开源地址:https://github.com/k2-fsa/sherpa-onnxsherpa-onnx是一个基于下一代Kaldi和ONNX运行时的开源语音处理框架,由K2-FSA团队开发并维护。该项目专注于提供跨平台、高效率的语音处理能力,支持在完全离线的环境中运行语音识别(ASR)、文本转语音(TTS)、说话人识别、语音活动检测(VAD)等多项功能。与依赖云服务的传统语音
- Whisper使AI人工智能语音识别更精准可靠
AI天才研究院
AI大模型企业级应用开发实战人工智能whisper语音识别ai
Whisper使AI人工智能语音识别更精准可靠关键词:Whisper、语音识别、AI模型、自动语音识别(ASR)、深度学习、Transformer、语音处理摘要:本文深入探讨了OpenAI开发的Whisper语音识别系统如何通过创新的深度学习架构显著提升语音识别的准确性和可靠性。我们将从技术原理、模型架构、实现细节到实际应用场景,全面分析Whisper如何克服传统语音识别系统的局限性,以及它为何成
- 音元分析法的价值
音元系统
音元系统#音元输入法人工智能语音识别语言模型自然语言处理
音元分析法的价值把现行的二维音节结构:音调维的声调与音质维的(声母和韵母)构成的音节,其中,声母由音素或音位充当/韵母由音素或音位构成,分析成或变换成一维的(音值维的)音元或片音构成的序列。这个项目有价值吗?AI分析AI的看法是:将音节的二维结构(声调+音质)转换为一维音元序列的方法,从项目结构看,当前项目已经建立了完整的语音处理系统,包括yinjie.py、shouyin.py、ganyin.p
- 【技术观点】AI大语言模型10大安全风险的思考
yxiaoyu__
人工智能语言模型安全
大模型应用已经真实来到我们每个人身边,在自然语言处理、图像识别、语音处理等领域展现出了前所未有的能力,影响着各行各业的发展。随着大模型应用的日益广泛,其安全问题也变得愈发重要。大模型训练需要大量数据,可能包含敏感信息(如个人信息、商业秘密等),造成信息泄漏;攻击者可以通过精心设计的输入(对抗性样本)欺骗AI模型,导致错误的输出,对自动驾驶、医疗诊断等构成严重威胁;大模型还可能被用于生成虚假信息、传
- 探索语音处理新纪元:WebRTC Audio Processing for Python
金畏战Goddard
探索语音处理新纪元:WebRTCAudioProcessingforPython去发现同类优质开源项目:https://gitcode.com/在数字时代,清晰、高效的音频通信是连接世界的基石。今天,我们为您介绍一个强大而灵活的开源工具——WebRTCAudioProcessingforPython,它将WebRTC先进的音频处理能力无缝引入Python生态系统,解锁高质量音频应用的新可能。项目介
- 强大而全面的语音处理工具——Sherpa-Onnx
郜里富
强大而全面的语音处理工具——Sherpa-Onnx项目地址:https://gitcode.com/gh_mirrors/sh/sherpa-onnx在人工智能的浪潮中,语音技术已成为连接人机的重要桥梁。今天,我们要向您隆重推荐一个开源宝藏——Sherpa-Onnx,一个集多种语音功能于一体的强大本地运行库,完美适配从服务器到边缘设备的各种场景。项目介绍Sherpa-Onnx是一款开源的语音处理神
- 手把手带你玩转声网ESP32大模型+TEN语音交互——零硬件基础也能懂!以AI智能眼镜为例
夜信431
交互人工智能stm32智能硬件深度学习
一、方案全景解析——智能眼镜的"最强大脑"(附硬件架构图:智能眼镜+ESP32-S3核心板+声网SDK)这套开源方案的核心是将大模型塞进智能眼镜!就像给你的眼镜装了个SiriProMax:硬件核心:ESP32-S3芯片(性能≈手机芯片的1/5,但功耗仅0.1W)魔法组件:声网SDK(让眼镜能像微信语音通话一样实时对话)创新点:通过按键唤醒+本地语音处理+云端大模型推理(延迟<300ms)二、硬件小
- AIGC 技术解析:Whisper 的低延迟语音识别
AI大模型应用之禅
AIGCwhisper语音识别
AIGC技术解析:Whisper的低延迟语音识别关键词:AIGC、Whisper、语音识别、低延迟、Transformer、端到端学习、语音处理摘要:本文深入解析OpenAIWhisper模型的低延迟语音识别技术。我们将从语音识别的基本原理出发,详细探讨Whisper的架构设计、核心算法、数学模型以及实现细节。文章包含完整的Python代码示例,展示如何在实际项目中应用Whisper进行低延迟语音
- AIxBoard部署BLIP模型进行图文问答
vslyu
深度学习openvino
一、AIxBoard简介AIxBoard(X板)是一款IA架构的人工智能嵌入式开发板,体积小巧功能强大,可让您在图像分类、目标检测、分割和语音处理等应用中并行运行多个神经网络。它是一款面向专业创客、开发者的功能强大的小型计算机,借助OpenVINO工具套件,CPU、iGPU都具备强劲的AI推理能力,基于AI的产品进行原型设计并将其快速推向市场的理想解决方案。二、多模态模型简介近年来,计算机视觉和自
- 在 React Native 中使用 Whisper 进行语音识别
pxr007
reactnativewhisper语音识别
在本文中,我们将使用Whisper创建语音转文本应用程序。Whisper需要Python后端,因此我们将使用Flask为应用程序创建服务器。ReactNative作为构建移动客户端的框架。我希望您喜欢创建此应用程序的过程,因为我确实这样做了。让我们直接深入研究它。什么是语音识别?语音识别使程序能够将人类语音处理成书面格式。语法、句法、结构和音频对于理解和处理人类语音至关重要。语音识别算法是计算机科
- 华为HCIP-AI认证题库中的部分问题
2301_82241859
程序员华为人工智能
D:类间方差答案:D6、语音识别技术就是让机器通过识别和理解把文本转换为语音的技术。A:TrueB:False答案:B8、由于现代的语音处理技术都以数字计算为基础,因此也称其为数字语音信号处理。A:TrueB:False答案:A9、不属于语音声学特征的是?A:频率B:语义C:时长D:振幅答案:B10、属于语言学内容的是?A:文字B:语音C:词汇D:语法答案:A,B,C,D11、语音合成方法有哪些?
- 深度学习芯片的数据预取机制与片上缓存交错策略研究
学习ing1
深度学习缓存智能电视
1.引言1.1研究背景与意义随着人工智能的快速发展,深度学习在图像识别、语音处理、自然语言处理等领域取得了巨大成功。深度学习芯片作为实现深度学习算法的关键硬件平台,其性能直接影响到深度学习系统的效率和应用范围。深度学习算法通常需要处理大量的数据和复杂的计算任务,这使得数据传输和存储成为性能瓶颈。数据预取机制和片上缓存交错策略是解决这一瓶颈的重要手段。数据预取机制通过预测处理器未来需要的数据并提前加
- RISC-V NPU语音转换实战指南:从芯片选型到代码优化
Android洋芋
RISC-V架构EIC7700X芯片RISC-VNPU语音DSP/NPU加速器TensorFlow框架PyTorch
简介RISC-V架构凭借其开源性、模块化和高性能,在AI语音处理领域展现出巨大潜力。本项目将探索如何在国产RISC-V服务器上实现语音转换模型的NPU适配与优化,涉及端到端模型设计、硬件驱动开发、INT8量化算子实现及深度学习框架集成等核心技术。通过结合EIC7700X芯片的硬件特性与语音转换任务特点,打造高性能、低延迟的语音处理系统,满足边缘计算场景下的实时语音转换需求。一、RISC-V架构与E
- 快速了解GPT-4o和GPT-4区别
rs勿忘初心
#AI大模型人工智能chatgptGPT-4oGPT4与GPT4o区别gpt4介绍
GPT-4o简介在5月14日的OpenAI举行春季发布会上,OpenAI在活动中发布了新旗舰模型“GPT-4o”!据OpenAI首席技术官穆里·穆拉蒂(MuriMurati)介绍,GPT-4o在继承GPT-4强大智能的同时,进一步提升了文本、图像及语音处理能力,为用户带来更加流畅、自然的交互体验。GPT-4o的“o”代表“omni”,源自拉丁语“omnis”。在英语中“omni”常被用作词根,用来
- 智能语音处理+1.3用SpeechLib实现文本转语音(100%教会)
胡萝卜不甜
智能语音处理语音识别人工智能python机器学习
欢迎来到智能语音处理系列的第三篇文章(用SpeechLib实现文本转语音)这是前两篇文章的地址:第一篇:智能语音处理+1.1下载需要的库(100%实现)-CSDN博客第二篇:智能语音识别+1.2用SAPI实现文本转语音(100%教会)-CSDN博客不好意思啊,各位读者,没把握好力度,原本预设的3篇文章,预计会多出两章.请大家见谅,一.简单介绍使用的库comtypes是另一个Python库,用于操作
- 【语音识别】基于matlab男女声在线识别【含Matlab源码 8997期】
Matlab研究室
matlab
欢迎来到Matlab研究室博客之家✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码论文复现程序定制期刊写作科研合作扫描文章底部QQ二维码或私信博主。个人主页:Matlab研究室代码获取方式:扫描文章底部QQ二维码或私信博主⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。更多Matlab语音处理仿真内容点击①Matlab
- 主流大模型架构
Jeremg
架构
什么是大模型架构大模型架构是指用于构建大规模人工智能模型的特定结构和设计模式,旨在处理海量数据、学习复杂的模式和关系,并实现强大的语言理解、生成、图像识别、语音处理等多种智能任务。以下是一些常见的大模型架构的特点、组成和应用:特点大规模参数:包含大量的参数,通常数以亿计甚至更多,以学习丰富的知识和模式,例如GPT-3拥有1750亿个参数。强大的表示能力:能够对各种类型的数据进行高效的表示和处理,捕
- Sherpa-ONNX:说话人识别与语音识别自动开启(VAD)+ Python API 完整指南
一只蜗牛儿
语音识别python人工智能
介绍Sherpa-ONNX是一个基于ONNX的轻量级语音识别框架,支持多种语音处理任务,包括说话人识别(SpeakerRecognition)和自动语音识别(AutomaticSpeechRecognition,ASR)。在本指南中,我们将重点介绍如何使用Sherpa-ONNX进行说话人识别、自动开启语音识别(VAD)以及如何通过PythonAPI进行操作。安装环境在开始之前,确保你的系统上已安装
- AI API:快速集成智能化功能的开发利器
桂花饼
AIGCAIAPI人工智能AIGC语言模型AI作画
AIAPI(ArtificialIntelligenceApplicationProgrammingInterface,人工智能应用程序接口)是应用程序接口的一种,专门用于提供人工智能相关功能的开发接口。它允许开发者利用现有的AI模型、工具或服务,将这些功能集成到自己的应用程序中,并为用户带来智能化的体验。AIAPI的核心功能主要与AI技术相关,比如自然语言处理(NLP)、计算机视觉、语音处理、机
- 云原生周刊:基于 KubeSphere LuBan 架构打造DeepSeek 插件
云计算
开源项目推荐KubeAIKubeAI是一个K8s上的AI推理操作器,旨在简化在生产环境中部署和管理大型语言模型(LLM)、向量嵌入和语音处理等机器学习模型。它提供与OpenAI兼容的API,支持在CPU和GPU上运行,并具备按需自动扩缩容的能力。KubeAI无需依赖Istio、Knative等其他系统,能够在几乎任何K8s集群中开箱即用。此外,它内置了模型代理,优化了键值缓存利用率,从而显著提升系
- Meta 计划在 Llama 4 中引入改进的语音功能,接近双向自然对话
timer_017
llama
据英国《金融时报》3月7日报道,Meta首席产品官ChrisCox透露,Llama4将是一个“全能模型”,语音功能将是原生的1。关于Meta计划在Llama4中引入改进语音功能并接近双向自然对话,具体情况如下1:功能特点原生语音处理:Llama4能够直接处理语音信息,无需先将语音转换为文本再输入模型处理,最后又将文本转换回语音,可极大提升语音交互的效率和流畅度。双向自然对话:Meta一直特别注重使
- 【深度学习】Hopfield网络:模拟联想记忆
T-I-M
深度学习人工智能
Transformer优化,什么是稀疏注意力?Transformer模型自2017年被提出以来,已经成为自然语言处理(NLP)领域的核心架构,并在计算机视觉、语音处理等其他领域也取得了显著的成功。然而,随着模型规模的不断增大和任务复杂性的提升,Transformer的计算成本和内存需求也随之激增。为了解决这一问题,研究者们提出了多种优化方法,其中稀疏注意力(SparseAttention)是一种备
- Transformer模型详解
Yuki-^_^
Transformer模型详解人工智能transformer深度学习人工智能
导读Transformer在许多的人工智能领域,如自然语言处理(NaturalLanguageProcessing,NLP)、计算机视觉(ComputerVision,CV)和语音处理(SpeechProcessing,SP)取得了巨大的成功。因此,自然而然的也吸引了许多工业界和学术界的研究人员的兴趣。到目前为止,已经提出了大量基于Transformer的相关工作和综述。本文基于邱锡鹏[1]老师近
- 数字人源头厂商-源码出售源码交付-OEM系统贴牌
余~~18538162800
音视频线性代数网络人工智能
引言在数字化浪潮中,数字人正成为创新应用的焦点。从虚拟偶像活跃于舞台,到虚拟客服在各行业的普及,数字人展现出巨大的潜力。搭建数字人源码系统,是融合多领域前沿技术的复杂工程,涵盖图形学、人工智能、语音处理等。本文将深入剖析数字人源码搭建的技术开发细节,为开发者提供全面且深入的技术指南。技术体系架构感知层语音识别:技术选型:采用Kaldi语音识别框架,它是一个开源且灵活的工具包,支持多种语言和声学模型
- 数字人源码源头搭建技术全攻略,支持OEM
余18538162800)
python
引言在人工智能与多媒体技术迅猛发展的当下,数字人已从概念构想逐步走进现实应用,广泛渗透于娱乐、教育、医疗、金融等多个领域。搭建数字人源码系统是一项综合性的技术工程,融合了计算机图形学、人工智能、语音处理等多学科前沿技术。本文将深入剖析数字人源码搭建的技术细节,为开发者提供详尽的技术开发指南。技术选型与架构设计图形渲染技术实时渲染引擎:Unity:作为一款跨平台的实时渲染引擎,Unity在数字人开发
- RealtimeSTT:实时语音转文本的开源神器,轻松实现高效语音处理
AI云极
【开源系列】语音识别开源
在语音技术飞速发展的时代,实时语音转文本(Speech-to-Text,简称STT)技术已逐渐成为语音助手、在线会议记录、字幕生成等应用的核心功能。今天要为大家推荐的是一款开源的实时语音转文本工具——RealtimeSTT,它功能强大且易于集成,为开发者提供了快速构建实时语音处理应用的能力。项目地址:GitHub-RealtimeSTT一、什么是RealtimeSTT?RealtimeSTT是一款
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象