[tensorflow] 多维矩阵的乘法

矩阵乘法本质上只能是两个二维的matrix进行叉乘,那么两个三维甚至四维的矩阵相乘是怎么做到的呢?

比如:

import tensorflow as tf
a = tf.constant(1,2,3,4)
b = tf.constant(1,2,4,6)
c = tf.matmul(a,b)
# c.shape == (1,2,3,6)

查看matmul的源码:

@tf_export("linalg.matmul", "matmul")
def matmul(a,
           b,
           transpose_a=False,
           transpose_b=False,
           adjoint_a=False,
           adjoint_b=False,
           a_is_sparse=False,
           b_is_sparse=False,
           name=None):
  """Multiplies matrix `a` by matrix `b`, producing `a` * `b`.

  The inputs must, following any transpositions, be tensors of rank >= 2
  where the inner 2 dimensions specify valid matrix multiplication arguments,
  and any further outer dimensions match.

  Both matrices must be of the same type. The supported types are:
  `float16`, `float32`, `float64`, `int32`, `complex64`, `complex128`.

  Either matrix can be transposed or adjointed (conjugated and transposed) on
  the fly by setting one of the corresponding flag to `True`. These are `False`
  by default.

  If one or both of the matrices contain a lot of zeros, a more efficient
  multiplication algorithm can be used by setting the corresponding
  `a_is_sparse` or `b_is_sparse` flag to `True`. These are `False` by default.
  This optimization is only available for plain matrices (rank-2 tensors) with
  datatypes `bfloat16` or `float32`.

  For example:

  ```python
  # 2-D tensor `a`
  # [[1, 2, 3],
  #  [4, 5, 6]]
  a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])

  # 2-D tensor `b`
  # [[ 7,  8],
  #  [ 9, 10],
  #  [11, 12]]
  b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])

  # `a` * `b`
  # [[ 58,  64],
  #  [139, 154]]
  c = tf.matmul(a, b)


  # 3-D tensor `a`
  # [[[ 1,  2,  3],
  #   [ 4,  5,  6]],
  #  [[ 7,  8,  9],
  #   [10, 11, 12]]]
  a = tf.constant(np.arange(1, 13, dtype=np.int32),
                  shape=[2, 2, 3])

  # 3-D tensor `b`
  # [[[13, 14],
  #   [15, 16],
  #   [17, 18]],
  #  [[19, 20],
  #   [21, 22],
  #   [23, 24]]]
  b = tf.constant(np.arange(13, 25, dtype=np.int32),
                  shape=[2, 3, 2])

  # `a` * `b`
  # [[[ 94, 100],
  #   [229, 244]],
  #  [[508, 532],
  #   [697, 730]]]
  c = tf.matmul(a, b)

  # Since python >= 3.5 the @ operator is supported (see PEP 465).
  # In TensorFlow, it simply calls the `tf.matmul()` function, so the
  # following lines are equivalent:
  d = a @ b @ [[10.], [11.]]
  d = tf.matmul(tf.matmul(a, b), [[10.], [11.]])
  ```

  Args:
    a: `Tensor` of type `float16`, `float32`, `float64`, `int32`, `complex64`,
      `complex128` and rank > 1.
    b: `Tensor` with same type and rank as `a`.
    transpose_a: If `True`, `a` is transposed before multiplication.
    transpose_b: If `True`, `b` is transposed before multiplication.
    adjoint_a: If `True`, `a` is conjugated and transposed before
      multiplication.
    adjoint_b: If `True`, `b` is conjugated and transposed before
      multiplication.
    a_is_sparse: If `True`, `a` is treated as a sparse matrix.
    b_is_sparse: If `True`, `b` is treated as a sparse matrix.
    name: Name for the operation (optional).

  Returns:
    A `Tensor` of the same type as `a` and `b` where each inner-most matrix is
    the product of the corresponding matrices in `a` and `b`, e.g. if all
    transpose or adjoint attributes are `False`:

    `output`[..., i, j] = sum_k (`a`[..., i, k] * `b`[..., k, j]),
    for all indices i, j.

    Note: This is matrix product, not element-wise product.


  Raises:
    ValueError: If transpose_a and adjoint_a, or transpose_b and adjoint_b
      are both set to True.
  """
  with ops.name_scope(name, "MatMul", [a, b]) as name:
    if transpose_a and adjoint_a:
      raise ValueError("Only one of transpose_a and adjoint_a can be True.")
    if transpose_b and adjoint_b:
      raise ValueError("Only one of transpose_b and adjoint_b can be True.")

    if context.executing_eagerly():
      if not isinstance(a, (ops.EagerTensor, _resource_variable_type)):
        a = ops.convert_to_tensor(a, name="a")
      if not isinstance(b, (ops.EagerTensor, _resource_variable_type)):
        b = ops.convert_to_tensor(b, name="b")
    else:
      a = ops.convert_to_tensor(a, name="a")
      b = ops.convert_to_tensor(b, name="b")

    # TODO(apassos) remove _shape_tuple here when it is not needed.
    a_shape = a._shape_tuple()  # pylint: disable=protected-access
    b_shape = b._shape_tuple()  # pylint: disable=protected-access
    if (not a_is_sparse and
        not b_is_sparse) and ((a_shape is None or len(a_shape) > 2) and
                              (b_shape is None or len(b_shape) > 2)):
      # BatchMatmul does not support transpose, so we conjugate the matrix and
      # use adjoint instead. Conj() is a noop for real matrices.
      if transpose_a:
        a = conj(a)
        adjoint_a = True
      if transpose_b:
        b = conj(b)
        adjoint_b = True
      return gen_math_ops.batch_mat_mul(
          a, b, adj_x=adjoint_a, adj_y=adjoint_b, name=name)

    # Neither matmul nor sparse_matmul support adjoint, so we conjugate
    # the matrix and use transpose instead. Conj() is a noop for real
    # matrices.
    if adjoint_a:
      a = conj(a)
      transpose_a = True
    if adjoint_b:
      b = conj(b)
      transpose_b = True

    use_sparse_matmul = False
    if a_is_sparse or b_is_sparse:
      sparse_matmul_types = [dtypes.bfloat16, dtypes.float32]
      use_sparse_matmul = (
          a.dtype in sparse_matmul_types and b.dtype in sparse_matmul_types)
    if ((a.dtype == dtypes.bfloat16 or b.dtype == dtypes.bfloat16) and
        a.dtype != b.dtype):
      # matmul currently doesn't handle mixed-precision inputs.
      use_sparse_matmul = True
    if use_sparse_matmul:
      ret = sparse_matmul(
          a,
          b,
          transpose_a=transpose_a,
          transpose_b=transpose_b,
          a_is_sparse=a_is_sparse,
          b_is_sparse=b_is_sparse,
          name=name)
      # sparse_matmul always returns float32, even with
      # bfloat16 inputs. This prevents us from configuring bfloat16 training.
      # casting to bfloat16 also matches non-sparse matmul behavior better.
      if a.dtype == dtypes.bfloat16 and b.dtype == dtypes.bfloat16:
        ret = cast(ret, dtypes.bfloat16)
      return ret
    else:
      return gen_math_ops.mat_mul(
          a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)

其中由这样一段描述:

如果a和b的dimention大于2,实际上进行的会是batch_mat_mul,此时进行叉乘的是batch中的每一个切片(slice)

这就要求:

  1. a和b除了最后两个维度可以不一致,其他维度要相同(比如上面代码第一维和第二维分别都是1,2)
  2. a和b最后两维的维度要符合矩阵乘法的要求(比如a的(3,4)能和b的(4,6)进行矩阵乘法)
    if (not a_is_sparse and
        not b_is_sparse) and ((a_shape is None or len(a_shape) > 2) and
                              (b_shape is None or len(b_shape) > 2)):
      # BatchMatmul does not support transpose, so we conjugate the matrix and
      # use adjoint instead. Conj() is a noop for real matrices.
      if transpose_a:
        a = conj(a)
        adjoint_a = True
      if transpose_b:
        b = conj(b)
        adjoint_b = True
      return gen_math_ops.batch_mat_mul(
          a, b, adj_x=adjoint_a, adj_y=adjoint_b, name=name)


# 上述代码中batch_mat_mul的定义
def batch_mat_mul(x, y, adj_x=False, adj_y=False, name=None):
  r"""Multiplies slices of two tensors in batches.

  Multiplies all slices of `Tensor` `x` and `y` (each slice can be

  viewed as an element of a batch), and arranges the individual results

  in a single output tensor of the same batch size. Each of the

  individual slices can optionally be adjointed (to adjoint a matrix

  means to transpose and conjugate it) before multiplication by setting

  the `adj_x` or `adj_y` flag to `True`, which are by default `False`.

  

  The input tensors `x` and `y` are 2-D or higher with shape `[..., r_x, c_x]`

  and `[..., r_y, c_y]`.

  

  The output tensor is 2-D or higher with shape `[..., r_o, c_o]`, where:

  

      r_o = c_x if adj_x else r_x

      c_o = r_y if adj_y else c_y

  

  It is computed as:

  

      output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])

  Args:
    x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
      2-D or higher with shape `[..., r_x, c_x]`.
    y: A `Tensor`. Must have the same type as `x`.
      2-D or higher with shape `[..., r_y, c_y]`.
    adj_x: An optional `bool`. Defaults to `False`.
      If `True`, adjoint the slices of `x`. Defaults to `False`.
    adj_y: An optional `bool`. Defaults to `False`.
      If `True`, adjoint the slices of `y`. Defaults to `False`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """

 

你可能感兴趣的:(tensorflow,工具性知识点)