Linux 字符设备驱动开发基础(五)—— ioremap() 函数解析

一、 ioremap() 函数基础概念

       几乎每一种外设都是通过读写设备上的寄存器来进行的,通常包括控制寄存器、状态寄存器和数据寄存器三大类,外设的寄存器通常被连续地编址。根据CPU体系结构的不同,CPU对IO端口的编址方式有两种:

a -- I/O 映射方式(I/O-mapped)

       典型地,如X86处理器为外设专门实现了一个单独的地址空间,称为"I/O地址空间"或者"I/O端口空间",CPU通过专门的I/O指令(如X86的IN和OUT指令)来访问这一空间中的地址单元。

b -- 内存映射方式(Memory-mapped)

  RISC指令系统的CPU(如ARM、PowerPC等)通常只实现一个物理地址空间,外设I/O端口成为内存的一部分。此时,CPU可以象访问一个内存单元那样访问外设I/O端口,而不需要设立专门的外设I/O指令。

     但是,这两者在硬件实现上的差异对于软件来说是完全透明的,驱动程序开发人员可以将内存映射方式的I/O端口和外设内存统一看作是"I/O内存"资源

    一般来说,在系统运行时,外设的I/O内存资源的物理地址是已知的,由硬件的设计决定。但是CPU通常并没有为这些已知的外设I/O内存资源的物理地址预定义虚拟地址范围,驱动程序并不能直接通过物理地址访问I/O内存资源,而必须将它们映射到核心虚地址空间内(通过页表),然后才能根据映射所得到的核心虚地址范围,通过访内指令访问这些I/O内存资源。


      Linux在io.h头文件中声明了函数ioremap(),用来将I/O内存资源的物理地址映射到核心虚地址空间(3GB-4GB)中(这里是内核空间),原型如下:

1、ioremap函数

     ioremap宏定义在asm/io.h内:

#define ioremap(cookie,size)           __ioremap(cookie,size,0)

__ioremap函数原型为(arm/mm/ioremap.c):

void __iomem * __ioremap(unsigned long phys_addr, size_t size, unsigned long flags);

参数:

phys_addr:要映射的起始的IO地址

size:要映射的空间的大小

flags:要映射的IO空间和权限有关的标志

该函数返回映射后的内核虚拟地址(3G-4G). 接着便可以通过读写该返回的内核虚拟地址去访问之这段I/O内存资源。


2、iounmap函数

    iounmap函数用于取消ioremap()所做的映射,原型如下:

     void iounmap(void * addr);


二、 ioremap() 相关函数解析

        在将I/O内存资源的物理地址映射成核心虚地址后,理论上讲我们就可以象读写RAM那样直接读写I/O内存资源了。为了保证驱动程序的跨平台的可移植性,我们应该使用Linux中特定的函数来访问I/O内存资源,而不应该通过指向核心虚地址的指针来访问

读写I/O的函数如下所示:

a -- writel()

       writel()往内存映射的 I/O 空间上写数据,wirtel()  I/O 上写入 32 位数据 (4字节)。

 原型:void writel (unsigned char data , unsigned short addr )

b -- readl()

      readl() 从内存映射的 I/O 空间上读数据,readl 从 I/O 读取 32 位数据 ( 4 字节 )。
 
原型:unsigned char readl (unsigned int addr )

变量    addr  是 I/O 地址。

返回值 : 从 I/O 空间读取的数值。

具体定义如下:

#define readb __raw_readb
#define readw(addr) __le16_to_cpu(__raw_readw(addr))
#define readl(addr) __le32_to_cpu(__raw_readl(addr))
#ifndef __raw_readb
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
    return *(const volatile u8 __force *) addr;
}
#endif
 
#ifndef __raw_readw
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
    return *(const volatile u16 __force *) addr;
}
#endif
 
#ifndef __raw_readl
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
    return *(const volatile u32 __force *) addr;
}
#endif
 
#define writeb __raw_writeb
#define writew(b,addr) __raw_writew(__cpu_to_le16(b),addr)
#define writel(b,addr) __raw_writel(__cpu_to_le32(b),addr)


三、使用实例

        还是拿我们写PWM驱动的实例来解析

1、这里我们先定义了一些寄存器,这里使用的地址均是物理地址:

#define GPD0CON       0x114000a0  
#define TIMER_BASE    0x139D0000             
#define TCFG0         0x0000                 
#define TCFG1         0x0004                              
#define TCON          0x0008               
#define TCNTB0        0x000C            
#define TCMPB0        0x0010 


2、为了使用内存映射,我们需先定义指针用来保存内存映射后的地址:

static unsigned int *gpd0con;  
static void *timer_base;  
注意:这里timer_base 指针指向的类型设为 void, 主要因为上面使用了地址偏移,使用void 更有利于我们使用;


3、使用ioremap() 函数进行内存映射,并将映射的地址赋给我们刚才定义的指针

gpd0con = ioremap(GPD0CON,4);  
timer_base = ioremap(TIMER_BASE,0x14); 

4、得到地址后,可以调用 writel() 、readl() 函数进行相应的操作

writel ((readl(gpd0con)&~(0xf<<0)) | (0x2<<0),gpd0con);  
writel ((readl(timer_base +TCFG0  )&~(0xff<<0)) | (0xff <<0),timer_base +TCFG0);   
writel ((readl(timer_base +TCFG1 )&~(0xf<<0)) | (0x2 <<0),timer_base +TCFG1 );   
  
writel (500, timer_base +TCNTB0  );  
writel (250, timer_base +TCMPB0 );  
writel ((readl(timer_base +TCON )&~(0xf<<0)) | (0x2 <<0),timer_base +TCON );   

可以看到,这里先从相应的地址中读取数据,修改完毕后,再利用writel函数进行数据写入。



你可能感兴趣的:(嵌入式开发,Linux,字符设备驱动开发,Linux,驱动开发基础)