- 2025年新出炉的MySQL面试题
长风清留扬
150道MySQL高频面试题mysql数据库面试sql
作者简介:CSDN\阿里云\腾讯云\华为云开发社区优质创作者,专注分享大数据、Python、数据库、人工智能等领域的优质内容个人主页:长风清留杨的博客形式准则:无论成就大小,都保持一颗谦逊的心,尊重他人,虚心学习。✨推荐专栏:Python入门到入魔,Mysql入门到入魔,Python入门基础大全,Flink入门到实战若缘分至此,无法再续相逢,愿你朝朝暮暮,皆有安好,晨曦微露道早安,日中炽热说午安,
- 精选了几道MySQL的大厂面试题,被提问的几率很高!
长风清留扬
150道MySQL高频面试题mysqlandroid数据库面试学习MySQL面试
作者简介:CSDN\阿里云\腾讯云\华为云开发社区优质创作者,专注分享大数据、Python、数据库、人工智能等领域的优质内容个人主页:长风清留杨的博客形式准则:无论成就大小,都保持一颗谦逊的心,尊重他人,虚心学习。✨推荐专栏:Python入门到入魔,Mysql入门到入魔,Python入门基础大全,Flink入门到实战若缘分至此,无法再续相逢,愿你朝朝暮暮,皆有安好,晨曦微露道早安,日中炽热说午安,
- Apache Flink 替换 Spark Stream的架构与实践( bilibili 案例解读)_streamsparkflink加载udf
2501_90243308
apacheflinkspark
3.基于ApacheFlink的流式计算平台为解决上述问题,bilibili希望根据以下三点要求构建基于ApacheFlink的流式计算平台。第一点,需要提供SQL化编程。bilibili对SQL进行了扩展,称为BSQL。BSQL扩展了Flink底层SQL的上层,即SQL语法层。**第二点,**DAG拖拽编程,一方面用户可以通过画板来构建自己的Pipeline,另一方面用户也可以使用原生Jar方式
- Flink (十二) :Table API & SQL (一) 概览
Leven199527
Flinkflinksql大数据
ApacheFlink有两种关系型API来做流批统一处理:TableAPI和SQL。TableAPI是用于Scala和Java语言的查询API,它可以用一种非常直观的方式来组合使用选取、过滤、join等关系型算子。FlinkSQL是基于ApacheCalcite来实现的标准SQL。无论输入是连续的(流式)还是有界的(批处理),在两个接口中指定的查询都具有相同的语义,并指定相同的结果。TableAP
- 用 Java 的思路快速学习 Scala
进朱者赤
其他大数据scalaScala
引言Scala是一种结合了面向对象和函数式编程的现代编程语言,广泛应用于大数据处理框架如ApacheSpark和ApacheFlink。对于熟悉Java的开发者来说,Scala的学习曲线相对平缓。本文将通过类比Java中的概念,帮助Java开发者快速上手Scala。1.基本语法1.1.数据类型以下是Scala和Java数据类型的汇总表格:Scala数据类型Java数据类型说明Intint32位整数
- Flink之kafka消息解析器2
怎么才能努力学习啊
flinkkafka大数据
概要昨天的话题,FlinkSource消费kafka数据自定义反序列化,获取自己想要的数据和类型实现过程publicclassTestWithMetadataDeserializationSchemaimplementsKafkaRecordDeserializationSchema{第一步:自定义实现这个接口,这里的泛型一般的都是自定义类@Overridepublicvoiddeserializ
- Flink之kafka消费数据
怎么才能努力学习啊
flinkkafka大数据
场景:本地构建Flink程序问题描述消费Kafka的数据时,使用Flink新的KakfaSource。会报如下错误KafkaSourcekafkaSource=KafkaSource.builder().setBootstrapServers(kafkaProperties.getProperty("kafka.bootstrap.servers")).setTopics("test2").set
- 【Flink 实战系列】Flink CDC 实时同步 Mysql 全量加增量数据到 Hudi
JasonLee实时计算
Flink实战系列hbasespark大数据
【Flink实战系列】FlinkCDC实时同步Mysql全量加增量数据到Hudi前言FlinkCDC是基于Flink开发的变化数据获取组件(Changedatacapture),简单的说就是来捕获变更的数据,ApacheHudi是一个数据湖平台,又支持对数据做增删改查操作,所以FlinkCDC可以很好的和Hudi结合起来,打造实时数仓,实时湖仓一体的架构,下面就来演示一下同步的过程。环境组件版本F
- Flink系列-2、Flink架构体系
技术武器库
大数据专栏flink架构jvm
版权声明:本文为博主原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接和本声明。大数据系列文章目录官方网址:https://flink.apache.org/学习资料:https://flink-learning.org.cn/目录Flink中的重要角⾊Flink数据流编程模型Libraries支持Flink集群搭建Local本地模式(开发测试)Standalone-伪分布环境(开
- Flink 的核心特点和概念
Ray.1998
大数据大数据数据分析数据仓库flink
Flink是一个流式处理框架,专注于高吞吐量、低延迟的数据流处理。它能处理无限流(即实时数据流)和有限流(批处理),具有很强的灵活性和可扩展性,广泛应用于实时数据分析、监控系统、数据处理平台等场景。下面是一些关于Flink的核心特点和概念:1.流处理和批处理流处理(StreamProcessing):Flink的核心就是流处理,它能够实时处理不断到达的数据流。Flink会将数据划分成时间窗口来处理
- Flink的流处理和批处理
Ray.1998
大数据flink大数据数据挖掘数据分析
1.流处理(StreamProcessing)流处理是Flink的核心功能之一,主要用于处理无限流数据,也就是不断到达的数据。它能够实时处理数据流,并对每个数据元素执行操作。流处理中的数据没有预定的边界,它的特征是持续到达,因此,流处理必须实时处理每个事件,而不能等到所有数据都到齐后再进行处理。核心特点:实时性:流处理的最大优势是实时性。Flink允许对实时数据流进行分析,计算和处理,几乎是对数据
- HUDI-0.11.0 BUCKET index on Flink 特性试用
_Magic
BigDataflinkhudi
1.背景在0.10.1版本下,使用默认的index(FLINK_STATE),在upsert模式下,几十亿级别的数据更新会消耗大量内存,并且检查点(checkpoint)时间过长。因此,切换到0.11.0的BUCKET索引。当前环境:Flink1.13.2+Hudi0.11.0(master2022.04.11)+COW+HDFS。关键配置项:index.type=BUCKEThoodie.buc
- Kafka 迁移 AutoMQ 时 Flink 位点管理的挑战与解决方案
AutoMQ
云计算云原生Kafka消息计算大数据AWSAutoMQ阿里云腾讯云GCP
编辑导读:AutoMQ是一款与ApacheKafka100%完全兼容的新一代Kafka,可以做到至多10倍的成本降低和极速的弹性。凭借其与Kafka的完全兼容性可以与用户已有的Flink等大数据基础设施进行轻松整合。Flink是重要的流处理引擎,与Kafka有着密切的关系。本文重点介绍了当用户需要将生产Kafka集群迁移到AutoMQ时,如何处理好Flink的位点来确保整体迁移的平滑过渡。引言在云
- 20250120 Flink 的 缓冲区超时(Buffer Timeout)
靈臺清明
flink
Flink的缓冲区超时(BufferTimeout)机制确实类似于一辆车等待乘客的过程,如果车每次只载一个乘客就发车,会导致效率低下,资源浪费。同样,在Flink的数据流处理中,缓冲区超时的设置对吞吐量和延迟的权衡至关重要。以下是更详细的原因解析和背后的机制:1.什么是缓冲区超时(BufferTimeout)?在Flink中,算子之间的数据通过网络传输。为了提高传输效率,Flink会在发送数据之前
- Java 驱动大数据流处理:Storm 与 Flink 入门 (大数据)
用心去追梦
大数据javastorm
Java是一种广泛使用的编程语言,特别适用于企业级应用开发。随着数据量的不断增长,处理大数据流成为了现代软件开发中的一个重要领域。ApacheStorm和ApacheFlink是两个用于处理大规模数据流的开源框架,它们都支持用Java编写的应用程序。下面将简要介绍这两个框架,并提供一些入门指导。ApacheStormApacheStorm是一个免费、开源的分布式实时计算系统。Storm让用户能够轻
- SeaTunnel 与 DataX 、Sqoop、Flume、Flink CDC 对比
不二人生
#数据集成工具SeaTunnel
文章目录SeaTunnel与DataX、Sqoop、Flume、FlinkCDC对比同类产品横向对比2.1、高可用、健壮的容错机制2.2、部署难度和运行模式2.3、支持的数据源丰富度2.4、内存资源占用2.5、数据库连接占用2.6、自动建表2.7、整库同步2.8、断点续传2.9、多引擎支持2.10、数据转换算子2.11、性能2.12、离线同步2.13、增量同步&实时同步2.14、CDC同步2.15
- 20250120 深入了解 Apache Flink 的 Checkpointing
靈臺清明
Flinkapacheflink大数据
ApacheFlink是一种用于实时流处理和批处理的分布式计算框架。在实时流处理任务中,保证数据的一致性和任务的容错性是至关重要的,而Flink的Checkpointing机制正是实现这一目标的核心技术。本文将详细介绍Flink的Checkpointing,包括其概念、原理、配置和实际应用。什么是Checkpointing?Checkpointing是Flink提供的一种用于容错的机制。它会在流处
- Flink Standalone 方案中解决挂机问题
星尘幻宇科技
flink大数据
Standalone中可以配置HighAvailability(HA)部署和配置首先了解Flink实际运行时包括两类进程:JobManager(又称为JobMaster):协调Task的分布式执行,包括调度Task、协调创Checkpoint以及当Jobfailover时协调各个Task从Checkpoint恢复等。TaskManager(又称为Worker):执行Dataflow中的Tasks,
- 大数据学习(37)- Flink运行时架构
viperrrrrrr
学习flink大数据
&&大数据学习&&系列专栏:哲学语录:承认自己的无知,乃是开启智慧的大门如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦1)作业管理器(JobManager)JobManager是一个Flink集群中任务管理和调度的核心,是控制应用执行的主进程。也就是说,每个应用都应该被唯一的JobManager所控制执行。JobManger又包含3个不同的组件。(1)JobMasterJobM
- Flink CDC MySQL同步MySQL错误记录
lingllllove
flinkmysql大数据
FlinkCDC简介FlinkCDC(ChangeDataCapture)是一种高效的数据同步工具,利用Flink强大的实时流处理能力,从MySQL等数据库捕获数据变更,并将这些变更实时同步到目标数据库。本文将详细介绍FlinkCDCMySQL同步到MySQL时常见的错误记录及其解决方法。常见错误及解决方法1.连接错误错误信息:FailedtoconnecttoMySQLserver.可能原因:
- FFA 2024 「流批一体」专场:探索在不同场景的流批一体
Apache Flink
FlinkForwardAsia2024即将盛大开幕!作为ApacheFlink社区备受期待的年度盛会之一,本届大会将于11月29至30日在上海隆重举行。FlinkForwardAsia(简称FFA)是由Apache官方授权的社区技术大会,旨在汇聚领先的行业实践与技术动态。在众多合作伙伴和技术开发者的支持下,FFA已成功举办六届。适逢ApacheFlink诞生10周年,今年的FFA将与广大开发者分
- Scaleph:基于Kubernetes的开放式数据平台
尤淞渊
Scaleph:基于Kubernetes的开放式数据平台scalephOpendataplatformbasedonFlinkandKubernetes,supportsweb-uiclick-and-dropdataintegrationwithSeaTunnelbackendedbyFlinkengine,flinkonlinesqldevelopmentbackendedbyFlinkSql
- 深入Flink : 源码解读数据倾斜代码落地
java
大家好,我是大圣,很高兴又和大家见面。上篇文章,我们详细说了通过使得Flink每个并行子任务上面都有对应的key来解决数据倾斜。但是我们只说了这个方案的思想和设计理解,还没有把这种方案真正应用到我们的Flink任务当中。这篇文章我们就重点把这种方案实践到我们写的Flink任务当中。什么是数据倾斜解决方案回顾代码如下:publicclassRebalanceKeyCreator{privateint
- Flink(十):DataStream API (七) 状态
Leven199527
Flinkflink大数据
1.状态的定义在ApacheFlink中,状态(State)是指在数据流处理过程中需要持久化和追踪的中间数据,它允许Flink在处理事件时保持上下文信息,从而支持复杂的流式计算任务,如聚合、窗口计算、联接等。状态是Flink处理有状态操作(如窗口、时间戳操作、聚合等)的核心组成部分。2.状态的类型Flink提供了强大的状态管理机制,允许应用程序在分布式环境中处理状态,保证高可用性和容错性。Flin
- Apache Flink
morcake
flink大数据
"ApacheFlinkistheopensourcestreamprocessingframeworkfordistributed,high-performance,ready-to-use,andaccuratestreamprocessingapplications."ApacheFlinkisaframeworkanddistributedprocessingengineforstatef
- 一文帮你搞懂flink中窗口的分类(一)
知否&知否
flink中窗口及其函数分类flink大数据
Window可以分成两类:CountWindow:按照指定的数据条数生成一个Window,与时间无关。滚动计数窗口,每隔N条数据,统计前N条数据滑动计数窗口,每隔N条数据,统计前M条数据TimeWindow:按照时间生成Window。(重点)滚动时间窗口,每隔N时间,统计前N时间范围内的数据,窗口长度N,滑动距离N滑动时间窗口,每隔N时间,统计前M时间范围内的数据,窗口长度M,滑动距离N还有一种特
- Java 大视界 -- Java 驱动大数据流处理:Storm 与 Flink 入门(六)
青云交
大数据新视界Java大视界FlinkStorm大数据流处理实时数据处理架构实时监控数据分析java
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 【大数据】Flink CDC 实时同步mysql数据
小码农叔叔
springboot入门到精通大数据FlinkCDCFlinkCDC同步数据FlinkCDC数据同步
目录一、前言二、FlinkCDC介绍2.1什么是FlinkCDC2.2FlinkCDC特点2.3FlinkCDC核心工作原理2.4FlinkCDC使用场景三、常用的数据同步方案对比3.1数据同步概述3.1.1数据同步来源3.2常用的数据同步方案汇总3.3为什么推荐FlinkCDC3.4FlinkCDC适用范围3.5FlinkCDC不同版本对比3.5.1FlinkCDC1.x3.5.2FlinkCD
- Flink 使用 Kafka 作为数据源时遇到了偏移量提交失败的问题
java我跟你拼了
异常笔记flinkkafka大数据
具体的错误日志21:43:57.069[KafkaFetcherforSource:CustomSource->Map->Filter(1/1)#2]ERRORorg.apache.kafka.clients.consumer.internals.ConsumerCoordinator-[ConsumerclientId=consumer-my-group-6,groupId=my-group]O
- 2、Flink 在 DataStream 和 Table 之间进行转换
猫猫爱吃小鱼粮
FlinkSQLflink大数据
1.概述TableAPI和DataStreamAPI都可以处理有界流和无界流。DataStreamAPI提供了流处理的基础(时间、状态和数据流管理);TableAPI抽象了许多内部内容,并提供了一个结构化和声明性的API;在处理历史数据时,需要管理有边界的流;无边界流出现在实时处理场景中,这些场景可能需要先使用历史数据进行初始化。为了高效执行,这两个API都以优化的批处理执行模式处理有界流。由于批
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分