In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 … in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333… (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333…) Besides, in 233 matrix, we got a i,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,…,a n,0, could you tell me a n,m in the 233 matrix?
Input
There are multiple test cases. Please process till EOF.
For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,…,a n,0(0 ≤ a i,0 < 2 31).
Output
For each case, output a n,m mod 10000007.
Sample Input
1 1
1
2 2
0 0
3 7
23 47 16
Sample Output
234
2799
72937
解题思路:由题意可得矩阵的第一列
0
a[1]
a[2]
a[3]
a[4]
为了凑233转化为
23
a[1]
a[2]
a[3]
a[4]
3
由 a i,j = a i-1,j +a i,j-1可以得到第二列
23*10+3
a[1]+23*10+3
a[2]+a[1]+23*10+3
a[3]+a[2]+a[1]+23*10+3
a[4]+a[3]+a[2]+a[1]+23*10+3
3
由此推得转移矩阵
10 0 0 0 0 1
10 1 0 0 0 1
10 1 1 0 0 1
10 1 1 1 0 1
10 1 1 1 1 1
0 0 0 0 0 1
如图将每一列的都求出来,到最后一列就是转移方程的m次方
那么最后一列就是A的m次方乘第一列。在求转移矩阵的时候使用快速幂的思想,最后求出来的结果是一个矩阵。
#include
#include
#include
#define N 15
const int mod=10000007;//因为数很大需要取模
int n;
int b[N];
struct Mat
{
long long mat[N][N];
}a,ans;
Mat mul(Mat a,Mat b)
{
int i,j,k;
Mat c;
memset(c.mat,0,sizeof(c.mat));
for(i=0; i<=n+1; i++)
{
for(j=0; j<=n+1; j++)
{
c.mat[i][j]=0;
for(k=0; k<=n+1; k++)
{
if(a.mat[i][k]&&b.mat[k][j])
{
c.mat[i][j]+=a.mat[i][k]*b.mat[k][j];//矩阵乘法
c.mat[i][j]%=mod;
}
}
}
}
return c;//返回乘完了之后的矩阵
}
void kuaisumi(int m)
{
int i;
memset(ans.mat,0,sizeof(ans.mat));
for(i=0;i<=n+1;i++)
ans.mat[i][i]=1;
while(m)//使用快速幂的思想进行矩阵的m次方相乘
{
if(m&1)//就是m%2==0
ans=mul(ans,a);
m/=2;
a=mul(a,a);
}
}
void inti()
{
int i,j;
b[0]=23;//b数组就是第一列,最后与转移矩阵的m次方相乘得到anm
b[n+1]=3;
for(i=1; i<=n; i++)
scanf("%d",&b[i]);
memset(a.mat,0,sizeof(a.mat));
for(i=0; i<=n; i++)
{
a.mat[i][0]=10;
a.mat[i][n+1]=1;
}
a.mat[n+1][n+1]=1;
for(i=1; i1; i++)
{
for(j=1; j<=i; j++)
{
a.mat[i][j]=1;
}
}
}
int main()
{
int i,m;
while(~scanf("%d%d",&n,&m))
{
inti();
kuaisumi(m);
long long s=0;
for(i=0;i<=n+1;i++)
s=(s+(ans.mat[n][i]*b[i])%mod)%mod;
printf("%lld\n",s);
}
return 0;
}