多元线性回归模型检验方法

终于找到一篇全面而又简洁的讲多元线性回归模型检验方法的文章
PDF下载地址
链接:https://pan.baidu.com/s/1UbyZcMC1VRTmlCEaX4Vybg
提取码:g481

具体内容

一、经济意义检验

经济意义检验主要检验模型参数估计量在经济意义。其表现为检验求得的参数估计值的符号与大小是否合理,是否与根据人们的经验和经济理论所拟定的期望值相符合。如果不符,则要查找原因和采取必要的修正措施,重新建立模型。

二、统计检验

1.拟合优度检验(${R^2}$检验) 拟合优度检验是检验回归方程对样本观测值的拟合程度,即检验所有解释变量与被解释变量之间的相关程度。

2.方程显著性检验(F检验)
方程显著性检验就是对模型中解释变量与被解释变
量之间的线性关系在总体上是否显著成立作出推断。即
检验被解释变量Y与所有解释变量戈l,石2,……,菇^之间
的线性关系是否显著,方程显著性检验所应用的方法是
数理统计学中假设检验。

3.变量显著性检验(t检验)
R2检验和F检验都是将所有的解释变量作为一个整体来检验它们与被解释变量Y的相关程度以及回归效果,但对于多元回归模型,方程的总体显著性并不意味每个解释变量对被解释变量Y的影响都是显著的。如果某个解释变量并不显著,则应该从方程中把它剔除,重新建立更为简单的方程。所以必须对每个解释变量进行显著性检验。

三、计量经济学检验

计量经济学检验是由计量经济学理论决定的,目的 在于检验模型的计量经济学性质。通常检验准则有随机 误差项的序列相关检验和异方差性检验,解释变量的多 重共线性检验等,其中最常用的是随机误差项的序列相 关检验。 在回归分析法中,假设随机误差项在不同的样本点 之间是不相关的,即si与8i(i≠_『)相互独立。但在实际 问题中,经常出现与此相违背的情况,占i与si(i≠.『)之 间存在相关性,称为序列相关。若存在序列相关,则此时 的回归模型无效,必须重新建立回归模型。 在序列相关中,最常见的是一阶自相关即占i与sf+l 相关,而对一阶自相关最常用的检验方法是DW检验法

模型预测检验

预测检验主要检验模型参数估计量的稳定性以及相对样本容量变化时的灵敏度,确定所建立的模型是否可以用于样本观测值以外的范围,即模型的所谓超样本特性。具体检验方法为:

①利用扩大了的样本重新估计模型参数,将新的估计值与原来的估计值进行比较,并检验二者之间差距的显著性。
②将所建立的模型用于样本以外某一时期的实际预测,并将该预测值与实际观测值进行比较,并检验二者之间差距的显著性。

你可能感兴趣的:(数据分析)