- 基于SIFT-POCS的超分辨率图像重建技术研究与实现
神经网络15044
算法深度学习仿真模型人工智能计算机视觉深度学习算法大数据机器学习
基于SIFT-POCS的超分辨率图像重建技术研究与实现摘要本文详细研究了基于SIFT特征匹配和POCS(ProjectionOntoConvexSets)算法的超分辨率图像重建方法,并完整实现了文献"Super-ResolutionImageReconstructionBasedonSIFT-POCS"中提出的算法。首先介绍了超分辨率重建的基本原理和研究意义,然后深入分析了SIFT特征提取与匹配、
- YOLOv11模型轻量化挑战技术文章大纲
程序猿全栈の董(董翔)
githubYOLOv11
模型轻量化的背景与意义目标检测模型YOLOv11的性能与应用场景轻量化的必要性:边缘设备部署、实时性需求、计算资源限制轻量化面临的挑战:精度与速度的权衡、模型压缩方法的选择YOLOv11的轻量化技术方向网络结构优化:深度可分离卷积、分组卷积、瓶颈设计模型剪枝:结构化剪枝与非结构化剪枝策略知识蒸馏:教师-学生模型框架与特征匹配方法量化与低比特压缩:FP16/INT8量化与二值化网络轻量化实现的具体方
- TeamT5-ThreatSonar 解决方案:构建智能动态的 APT 与勒索软件防御体系
江苏思维驱动智能研究院有限公司
自动化网络大数据
一、核心功能深度解析:从威胁狩猎到自动化响应的闭环能力(一)威胁狩猎:主动挖掘潜伏性攻击的“数字侦探”多层级威胁识别引擎:静态特征匹配:内置超1000种APT后门签名(如Regin、Duqu等高级工具包特征),实时扫描端点文件、注册表与进程,比对全球威胁情报库(每日更新超50万条IOC);动态行为分析:通过内核级监控技术,捕捉异常操作(如非预期的进程注入、加密API高频调用),例如某银行端点出现“
- 目标跟踪存在问题以及解决方案
选与握
#目标跟踪目标跟踪人工智能计算机视觉
3D跟踪一、数据特性引发的跟踪挑战1.点云稀疏性与远距离特征缺失问题表现:激光雷达点云密度随距离平方衰减(如100米外车辆点云数不足近距离的1/10),导致远距离目标几何特征(如车轮、车顶轮廓)不完整,跟踪时易因特征匹配失败导致ID丢失。典型案例:在高速公路场景中,200米外的卡车因点云稀疏(仅约50个点),跟踪算法难以区分其与大型货车的形状差异,导致轨迹跳跃或ID切换。技术方案:稀疏点云增强与特
- CVPR 2024 3D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)
1、3D方向Rapid3DModelGenerationwithIntuitive3DInputInstantaneousPerceptionofMovingObjectsin3DNEAT:Distilling3DWireframesfromNeuralAttractionFields⭐codeSculptingHolistic3DRepresentationinContrastiveLangua
- OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算
OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算【下载地址】OpenCV双目视觉棋盘格标定特征匹配及三维坐标计算OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算本资源库提供了基于OpenCV的双目视觉系统标定和三维重建基础教程,专注于利用棋盘格作为特征目标进行相机校准,特征点匹配以及随后的三维坐标计算项目地址:https://gitcode.com/open-source-toolki
- 【python实用小脚本-109】人脸识别系统实战:从基础实现到性能优化
Kyln.Wu
Pythonpython开发语言opencv
一、代码功能解析1.核心功能概述本代码实现了一个基于face_recognition库的人脸识别系统,能够从已知人脸库中识别出输入图像中的人物身份,主要功能包括:已知人脸特征编码存储未知图像人脸检测与编码人脸特征匹配与身份识别结果可视化展示2.关键模块深度解析(1)已知人脸编码模块defget_encoded_faces():encoded={}fordirpath,dnames,fnamesin
- SIFT 全面解析:原理、实现与应用
Hello.Reader
算法其他算法
1.引言1.1什么是SIFT?SIFT,全称为Scale-InvariantFeatureTransform(尺度不变特征变换),是一种用于图像特征检测和描述的经典算法。它通过提取图像中的局部关键点,并为每个关键点生成具有尺度和旋转不变性的描述子,使其能够在不同的图像中进行特征匹配。SIFT算法尤其适合处理视角变化、尺度变换、部分遮挡和光照变化的问题,因此被广泛应用于计算机视觉领域。1.2SIFT
- 基于 SIFT 对图像进行局部特征匹配附Matlab代码
Matlab科研工作室
matlab计算机视觉开发语言
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍图像匹配是计算机视觉领域的一项基础且关键的技术,它旨在寻找不同图像之间的对应关系,进而为物体识别、三维重建、图像拼接等高级应用提供坚实的基础。在众多的图像匹配方法中,局部特征
- godwork_ AT 5.2 摄影测量空三数据处理软件。
软件逆向001
软件需求
1.平差技术,平差模块不依赖PATB、Bingo等国外技术2.采用特征匹配,对国内无人机数据具有很强的适应性,对测区大小、形状、重叠度没有严格限制,适用于大偏角影像、大高差地区。3.对飞行方向没有要求,无需旋转影像等预处理过程,可直接进行空三处理4.空三和DEM生成一体化,所有点(每片像点5千~2万个)参与光束法平差,空三结果直接生成DEM5.智能化畸变改正,可处理不同类型的无人机畸变参数,最大程
- Camera相机人脸识别系列专题分析之一:人脸识别系列专题SOP及理论知识介绍
一起搞IT吧
人工智能图像处理android数码相机
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:内存泄漏和内存占用拆解系列专题这一篇我们开始讲:Camera相机人脸识别系列专题分析之一:人脸识别系列专题SOP及理论知识介绍目录一、人脸识别系列专题SOPSOP构思初步计划:二、:人脸识别2.1:人脸识别概念2.2:人脸识别概述2.3:人脸识别概述历史2.4:人脸识别技术几何特征匹配模板匹配机器学习方法深度学习在人脸识别中的应用2.5:
- 点云的配准算法
太极幻宇
算法
点云的配准算法是将多个点云数据集对齐以便进行后续分析和处理的关键技术。以下是一些常见的点云配准算法:一、粗配准算法粗配准是在点云相对位姿完全未知的情况下进行的初步配准,目的是为精配准提供良好的初始值。常见的粗配准算法有:基于特征匹配的配准算法:如SAC-IA(SampleConsensusInitialAlignment)采样一致性初始配准算法,它基于FPFH(FastPointFeatureHi
- 广告推荐原理分析
惜之惜之
人工智能
推荐算法的核心技术主要基于用户行为分析、数据建模和多维度特征匹配,其核心逻辑是通过对用户显性/隐性反馈数据的深度挖掘,结合机器学习模型实现精准预测。以下从推荐机制原理和语音监听争议两个维度进行解析:一、推荐算法识别用户喜好的核心技术1行为数据建模-显性反馈:通过用户主动行为(如点赞、收藏、购买)直接获取偏好数据。例如用户在短视频平台的点赞行为会被记录为正向反馈-隐性反馈:分析停留时长、重复播放、滑
- 【SLAM中的点云处理:从基础到实战】
Unpredictable222
SLAM算法自动驾驶自主导航算法自动驾驶ubuntuc++笔记
最近一直在学SLAM算法,发现点云处理是非常非常重要的,我就再认真学了一遍关于点云处理的内容(看了高翔老师的一本书——《自动驾驶与机器人中的SLAM技术:从理论到实践》,写得非常好,还有配套的代码),这篇博客就作为我的点云处理学习笔记,分享给大家!1.引言点云在SLAM中的核心作用:激光雷达SLAM(如LOAM)、三维重建、自动驾驶感知。四大基础任务:最近邻搜索(数据关联、特征匹配)。几何拟合(平
- 高翔《视觉SLAM十四讲》第七章视觉里程计3d-2d位姿估计代码详解与理论解析
xMathematics
3d视觉slam机器人无人驾驶无人机人工智能
高翔《视觉SLAM十四讲》第七章代码详解与理论解析一、三维空间位姿估计核心算法实现在视觉SLAM领域,3D-2D位姿估计是确定相机在三维空间中位置和姿态的关键技术。本部分将详细解析其工程实现框架,同时说明代码模块的划分逻辑。代码整体结构清晰,各模块分工明确,主要包含特征匹配、3D点构建、PnP问题求解以及位姿优化等部分。算法流程从读取两幅图像和对应的深度图开始,通过特征匹配模块找出两幅图像中的匹配
- 四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
BB_CC_DD
高效清洗数据集算法聚类深度学习
文章内容结构:一.先介绍什么是Annoy算法。二.用Annoy算法建树的完整代码。三.用Annoy建树后的树特征匹配聚类归类图像。一.先介绍什么是Annoy算法下面的文章链接将Annoy算法讲解的很详细,这里就不再做过多原理的分析了,想详细了解的可以看看这篇文章内容。https://zhuanlan.zhihu.com/p/148819536总的来说:(1)通过多次递归迭代,建立一个二叉树,以二叉
- colmap参数调优
我要喝可乐!
pythonc++
colmap中进行三角化的时候,一些参数存在与IncrementalPipelineOptions结构体中,影响重建精度的参数主要涉及:特征匹配、BA(BundleAdjustment捆绑调整)、初始化、相机参数优化、并行计算等。关键参数优化(1)影响特征匹配的参数参数默认值推荐优化作用min_num_matches1530过滤低质量的特征匹配init_num_trials200500选取初始帧对
- CLIPGaze: Zero-Shot Goal-Directed ScanpathPrediction Using CLIP
小周爱学习€
计算机视觉深度学习人工智能
摘要目标导向的扫描路径预测旨在预测人们在搜索视觉场景中的目标时的视线移动路径。大多数现有的目标导向扫描路径预测方法在面对训练过程中未出现的目标类别时,泛化能力较差。此外,它们通常采用不同的预训练模型分别提取目标提示和图像的特征,导致两者之间存在较大的特征差异,使得后续的特征匹配和融合变得困难。为了解决上述问题,我们提出了一种新颖的零样本目标导向扫描路径预测模型,命名为CLIPGaze。我们利用CL
- opencv学习:FLANN匹配器算法实现指纹验证与指纹识别
夜清寒风
opencv学习人工智能计算机视觉
概念FLANN(FastLibraryforApproximateNearestNeighbors)是一个开源的C++库,用于在高维空间中进行近似最近邻搜索。它被广泛用于计算机视觉和机器学习领域,特别是在处理具有大量特征点的图像匹配问题时。FLANN旨在提供一个快速且灵活的近似最近邻搜索解决方案。最近邻搜索:给定一个查询点,最近邻搜索的目标是找到一个数据点,使得与查询点之间的距离最小。在特征匹配中
- opencv指纹匹配
进来有惊喜
opencv人工智能计算机视觉
一、指纹匹配概述指纹匹配是指通过比较两个指纹图像的特征,判断它们是否来自同一手指的过程。在实际应用中,如门禁系统、考勤系统、刑侦鉴定等领域,指纹匹配技术发挥着重要作用。OpenCV作为强大的计算机视觉库,为指纹匹配提供了丰富的工具和方法,一般可借助特征提取、特征匹配等步骤实现指纹匹配。二、指纹匹配的基本原理指纹匹配的核心目标是判断两个指纹图像是否来自同一手指。其基本原理是通过提取指纹图像的特征,然
- 【秣厉科技】LabVIEW工具包——OpenCV 教程(16):图像缝合
秣厉科技
秣厉科技-LabVIEW-OpenCV科技labviewopencv
文章目录前言stitching模块图像缝合总结前言需要下载安装OpenCV工具包的朋友,请前往此处;系统要求:Windows系统,LabVIEW>=2018,兼容32位和64位。stitching模块stitching模块是OpenCV中用于图像拼接的一个核心模块。该功能主要通过Stitcher类实现,该类封装了图像拼接的各个步骤,包括特征点检测、特征匹配、图像配准、图像投影和融合等。deta
- DeepSORT 目标追踪算法详解
reset2021
目标追踪目标跟踪计算机视觉人工智能
DeepSORT(DeepSimpleOnlineandRealtimeTracking)是多目标追踪(MOT)领域的经典算法,通过结合目标检测、运动预测和外观特征匹配,实现了高效、稳定的实时追踪。其核心思想是通过检测驱动追踪(Tracking-by-Detection),在目标检测的基础上,利用卡尔曼滤波预测目标运动轨迹,并通过Re-ID特征解决遮挡和ID切换问题。一、DeepSORT核心组件1
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- 利用 OpenCV 库进行实时目标物体检测
欣然~
opencv人工智能计算机视觉
一、代码概述此代码利用OpenCV库实现了基于特征匹配的实时物体检测系统。通过摄像头捕获实时视频帧,将其与预先加载的参考图像进行特征匹配,从而识别出视频帧中是否存在与参考图像匹配的物体。二、环境依赖OpenCV:用于图像处理、特征提取和匹配等操作。NumPy:用于数值计算,OpenCV依赖于NumPy进行数组操作。可以使用以下命令安装所需库:bashpipinstallopencv-pythonn
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- Python的PyTorch+CNN深度学习技术在人脸识别项目中的应用
mosquito_lover1
python深度学习pytorchcnn
人脸识别技术是一种基于人脸特征进行身份识别的生物识别技术,其核心原理包括人脸检测、人脸对齐、特征提取、特征匹配、身份识别。一、应用场景安防:门禁、监控。金融:刷脸支付、身份验证。社交:自动标注、美颜。医疗:患者身份确认、情绪分析。二、关键技术深度学习:CNN在人脸检测、特征提取中表现优异。大数据:大规模数据集(如LFW、MegaFace)提升模型泛化能力。硬件加速:GPU、TPU等加速计算,提升实
- 【OpenCV-Python】——哈里斯/Shi-Tomas角检测&FAST/SIFT/ORB特征点检测&暴力/FLANN匹配器&对象查找
柯宝最帅
OpenCV学习计算机视觉人工智能
目录前言:1、角检测1.1哈里斯角检测1.2优化哈里斯角1.3Shi-Tomasi角检测2、特征点检测2.1FAST特征点检测2.2SIFT特征检测2.3ORB特征检测3、特征匹配3.1暴力匹配器3.2FLANN匹配器4、对象查找总结:前言:图像的特征是指图像中具有独特性和易识别性的区域,如角和边缘等。提取特征并对其进行描述,便于图像匹配和搜索。1、角检测1.1哈里斯角检测cv2.conerHar
- 计算机视觉——SIFT特征提取与检索算法
-shiba-
计算机视觉算法sift算法
计算机视觉——SIFT特征提取与检索算法1.基本介绍1.1算法特点1.2检测步骤2.基本原理2.1关键点2.2尺度空间2.3高斯模糊2.3.1高斯函数2.3.2高斯模糊2.3.3高斯金字塔2.4DOG函数2.4.1DOG函数的2.5关键点描述及匹配3.实验以及总结3.1实验数据集3.2提取图片SIFT特征,并展示特征点3.2.1代码3.2.2结果展示(选取)3.3计算两张图片SIFT特征匹配结果3
- 3dgs 2025 学习笔记
AI算法网奇
3d渲染学习笔记
CVPR20243D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)_cvpr2024-structure-awaresparse-viewx-ray3dreconstr-CSDN博客https://github.com/apple/ml-hugs3DGSCOLMAP-Free3DGaussianSplatting⭐codeprojectFeature3DGS
- DeepSeek 与网络安全:AI 驱动的智能防御
一ge科研小菜鸡
人工智能运维网络
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能(AI)的快速发展,深度学习技术正渗透到多个领域,从医疗诊断到自动驾驶,再到金融风险控制,AI以其强大的计算能力和数据分析能力改变着传统行业。而在网络安全领域,面对日益复杂和高频率的网络攻击,传统的防御体系正遭遇前所未有的挑战。攻击者利用自动化工具、社会工程学和新型攻击策略,使得传统基于规则和特征匹配的安全手段逐渐失效。在这样
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam