C++词典

Const

五、对于函数

    
    
    
    
  1. void Fuction1 ( const int r );  

此处为参数传递C++ const变量值,意义是变量初值不能被函数改变

    
    
    
    
  1. const int Fuction1 (int);  

此处返回const值,意思指返回的原函数里的变量的初值不能被修改,但是函数按值返回的这个变量被制成副本,能不能被修改就没有了意义,它可以被赋给任何的const或非const类型变量,完全不需要加上这个const关键字。但这只对于内部类型而言(因为内部类型返回的肯定是一个值,而不会返回一个变量,不会作为左值使用),对于用户自定义类型,返回值是常量是非常重要的,见下面条款。

    
    
    
    
  1. Class CX; //内部有构造函数,声明如CX(int r =0)  
  2. CX Fuction1 () { return CX(); }  
  3. const CX Fuction2 () { return CX(); } 

如有上面的自定义类CX,和函数Fuction1()和Fuction2(),我们进行如下操作时:

    
    
    
    
  1. Fuction1() = CX(1); //没有问题,可以作为左值调用  
  2. Fuction2() = CX(1); //编译错误,const返回值禁止作为左值调用。
    因为左值把返回值作为变量会修改其返回值,const声明禁止这种修改。 

4.函数中指针的C++ const变量传递和返回:

    
    
    
    
  1. int F1 (const char * pstr);  

作为传递的时候使用const修饰可以保证不会通过这个指针来修改传递参数的初值,这里在函数内部任何修改*pstr的企图都会引起编译错误。

    
    
    
    
  1. const char * F2 ();  

意义是函数返回的指针指向的对象是一个const对象,它必须赋给一个同样是指向const对象的指针。

    
    
    
    
  1. const char * const F3();  

比上面多了一个const,这个const的意义只是在他被用作左值时有效,它表明了这个指针除了指向const对象外,它本身也不能被修改,所以就不能当作左值来处理。

5.函数中引用的const传递:

    
    
    
    
  1. void F1 ( const X& px);  

这样的一个C++ const变量引用传递和最普通的函数按值传递的效果是一模一样的,他禁止对引用的对象的一切修改,唯一不同的是按值传递会先建立一个类对象的副本,然后传递过去,而它直接传递地址,所以这种传递比按值传递更有效。

另外只有引用的const传递可以传递一个临时对象,因为临时对象都是const属性,且是不可见的,他短时间存在一个局部域中,所以不能使用指针,只有引用的const传递能够捕捉到这个家伙。


内联函数

(1)什么是内联函数?
内联函数是指那些定义在类体内的成员函数,即该函数的函数体放在类体内。

(2)为什么要引入内联函数?
当然,引入内联函数的主要目的是:解决程序中函数调用的效率问题。另外,前面我们讲到了宏,里面有这么一个例子:
#define ABS(x) ((x)>0? (x):-(x))
当++i出现时,宏就会歪曲我们的意思,换句话说就是:宏的定义很容易产生二意性。

我们可以看到宏有一些难以避免的问题,怎么解决呢?前面我们已经尽力替换了。
下面我们用内联函数来解决这些问题。

(3)为什么inline能取代宏?
1、 inline 定义的类的内联函数,函数的代码被放入符号表中,在使用时直接进行替换,(像宏一样展开),没有了调用的开销,效率也很高。 
2、 很明显,类的内联函数也是一个真正的函数,编译器在调用一个内联函数时,会首先检查它的参数的类型,保证调用正确。然后进行一系列的相关检查,就像对待任何一个真正的函数一样。这样就消除了它的隐患和局限性。
3、 inline 可以作为某个类的成员函数,当然就可以在其中使用所在类的保护成员及私有成员。

(4)内联函数和宏的区别?
内联函数和宏的区别在于,宏是由预处理器对宏进行替代,而内联函数是通过编译器控制来实现的。而且内联函数是真正的函数,只是在需要用到的时候,内联函数像宏一样的展开,所以取消了函数的参数压栈,减少了调用的开销。你可以象调用函数一样来调用内联函数,而不必担心会产生于处理宏的一些问题。内联函数与带参数的宏定义进行下比较,它们的代码效率是一样,但是内联欢函数要优于宏定义,因为内联函数遵循的类型和作用域规则,它与一般函数更相近,在一些编译器中,一旦关上内联扩展,将与一般函数一样进行调用,比较方便。 

(5)什么时候用内联函数?
内联函数在C++类中,应用最广的,应该是用来定义存取函数。我们定义的类中一般会把数据成员定义成私有的或者保护的,这样,外界就不能直接读写我们类成员的数据了。对于私有或者保护成员的读写就必须使用成员接口函数来进行。如果我们把这些读写成
员函数定义成内联函数的话,将会获得比较好的效率。
Class A
{
Private:
int nTest;
 Public:
int readtest() { return nTest;}
void settest(int I) { nTest=I; }
}

(6)如何使用内联函数?
我们可以用inline来定义内联函数。
inline int A (int x) { return 2*x; }
不过,任何在类的说明部分定义的函数都会被自动的认为是内联函数。

(7)内联函数的优缺点?
我们可以把它作为一般的函数一样调用,但是由于内联函数在需要的时候,会像宏一样展开,所以执行速度确比一般函数的执行速度要快。当然,内联函数也有一定的局限性。就是函数中的执行代码不能太多了,如果,内联函数的函数体过大,一般的编译器会放弃内联方式,而采用普通的方式调用函数。(换句话说就是,你使用内联函数,只不过是向编译器提出一个申请,编译器可以拒绝你的申请)这样,内联函数就和普通函数执行效率一样了。

(8)如何禁止函数进行内联?
如果使用VC++,可以使用/Ob命令行参数。当然,也可以在程序中使用 #pragma auto_inline达到相同的目的。

(9)注意事项:
1.在内联函数内不允许用循环语句和开关语句。
2.内联函数的定义必须出现在内联函数第一次被调用之前。

using namespace std

      对于一个存在着标准输入输出的C++控制台程序,一般会在#include 的下一行发现一句话,using namespace std。这句话其实就表示了所有的标准库函数都在标准命名空间std中进行了定义。其作用就在于避免发生重命名的问题。
  1. 关于namespace
  C++引入了命名空间namespace主要解决了多个程序员在编写同一个项目中可能出现的函数等重名的现象。解决方法就是加上自己的命名空间。比如下面的例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include
using namespace std;
 
namespace ZhangSan
{
    int a=10;//张三把10赋值给了变量a
}
namespace LiSi
{
    int a=5;//李四把10赋值给了变量a
}
 
void main()
{
    int a=1;
    cout<<"张三定义的a="<
    cout<<"李四定义的a="<
    cout<<"主函数定义的a="<
}
  上例中的“ZhangSan::a”和“LiSi::a”分别表示了调用张三命名空间中的a变量和李四命名空间中的a变量。这样的好处显而易见,那就是虽然张三和李四这两个程序员都定义了一个变量a,但是并不会出现重名的危险。
运行结果为:
C++词典_第1张图片 
  
  2. 关于using namespace *
  顾名思义,using namespace * 就表示释放命名空间* 中间的东西。好处在于我们在程序里面就不用在每个函数的头上都加上*::来调用。比如说如果上面那个程序,如果我们不在using namespace std,那么我们就需要在主函数中的标准输出流cout函数前面加上std,写成
 
std::cout
表示调用std空间里面的标准输出流cout。但是有些时候我们也不能图这个方便,比如说如果在主函数中将命名空间ZhangSan和LiSi的中所定义的变量释放出来,如下例1:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include
using namespace std;
 
namespace ZhangSan
{
    int a=10;//张三把10赋值给了变量a
}
namespace LiSi
{
    int a=5;//李四把10赋值给了变量a
}
 
void main()
{
    int a=1;
    using namespace ZhangSan;
    using namespace LiSi;
    cout<
}
这个程序输出结果为:
如果我们在主函数中把 int a=1给删除,如下例2:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include
using namespace std;
 
namespace ZhangSan
{
    int a=10;//张三把10赋值给了变量a
}
namespace LiSi
{
    int a=5;//李四把10赋值给了变量a
}
 
void main()
{
    using namespace ZhangSan;
    using namespace LiSi;
    cout<
}
会发现根本就不会通过编译,输出的错误信息为:
       
       
       
       
error C2872: “a”: 不明确的符号
  分析可以看出,上面这个例2会引起歧义。因为ZhangSan中间的a被释放出来,同理LiSi中间的a也被释放出来了。那么编译器就不知道到底哪个才是需要输出的a,自然就会引起歧义了。同理,在例1中,编译器同样不知道到底哪个才是需要输出的a,于是它只采用了主函数中自己定义的a,这样程序也不会报错,但是只会输出1,自然结果就如上面的图所示了。


typedef

四个用途

用途一:

定义一种类型的别名,而不只是简单的宏替换。可以用作同时声明指针型的多个对象。比如:
char* pa, pb; // 这多数不符合我们的意图,它只声明了一个指向字符变量的指针, 
// 和一个字符变量;
以下则可行:
typedef char* PCHAR; // 一般用大写
PCHAR pa, pb; // 可行,同时声明了两个指向字符变量的指针
虽然:
char *pa, *pb;
也可行,但相对来说没有用typedef的形式直观,尤其在需要大量指针的地方,typedef的方式更省事。

用途二:

用在旧的C的代码中(具体多旧没有查),帮助struct。以前的代码中,声明struct新对象时,必须要带上struct,即形式为: struct 结构名 对象名,如:
struct tagPOINT1
{
int x;
int y;
};
struct tagPOINT1 p1;

而在C++中,则可以直接写:结构名 对象名,即:
tagPOINT1 p1;

估计某人觉得经常多写一个struct太麻烦了,于是就发明了:
typedef struct tagPOINT
{
int x;
int y;
}POINT;

POINT p1; // 这样就比原来的方式少写了一个struct,比较省事,尤其在大量使用的时候

或许,在C++中,typedef的这种用途二不是很大,但是理解了它,对掌握以前的旧代码还是有帮助的,毕竟我们在项目中有可能会遇到较早些年代遗留下来的代码。

用途三:

用typedef来定义与平台无关的类型。
比如定义一个叫 REAL 的浮点类型,在目标平台一上,让它表示最高精度的类型为:
typedef long double REAL; 
在不支持 long double 的平台二上,改为:
typedef double REAL; 
在连 double 都不支持的平台三上,改为:
typedef float REAL; 
也就是说,当跨平台时,只要改下 typedef 本身就行,不用对其他源码做任何修改。
标准库就广泛使用了这个技巧,比如size_t。
另外,因为typedef是定义了一种类型的新别名,不是简单的字符串替换,所以它比宏来得稳健(虽然用宏有时也可以完成以上的用途)。

用途四:

为复杂的声明定义一个新的简单的别名。方法是:在原来的声明里逐步用别名替换一部分复杂声明,如此循环,把带变量名的部分留到最后替换,得到的就是原声明的最简化版。举例:

1. 原声明:int *(*a[5])(int, char*);
变量名为a,直接用一个新别名pFun替换a就可以了:
typedef int *(*pFun)(int, char*); 
原声明的最简化版:
pFun a[5];

2. 原声明:void (*b[10]) (void (*)());
变量名为b,先替换右边部分括号里的,pFunParam为别名一:
typedef void (*pFunParam)();
再替换左边的变量b,pFunx为别名二:
typedef void (*pFunx)(pFunParam);
原声明的最简化版:
pFunx b[10];

3. 原声明:doube(*)() (*e)[9]; 
变量名为e,先替换左边部分,pFuny为别名一:
typedef double(*pFuny)();
再替换右边的变量e,pFunParamy为别名二
typedef pFuny (*pFunParamy)[9];
原声明的最简化版:
pFunParamy e;

理解复杂声明可用的“右左法则”:
从变量名看起,先往右,再往左,碰到一个圆括号就调转阅读的方向;括号内分析完就跳出括号,还是按先右后左的顺序,如此循环,直到整个声明分析完。举例:
int (*func)(int *p);
首先找到变量名func,外面有一对圆括号,而且左边是一个*号,这说明func是一个指针;然后跳出这个圆括号,先看右边,又遇到圆括号,这说明(*func)是一个函数,所以func是一个指向这类函数的指针,即函数指针,这类函数具有int*类型的形参,返回值类型是int。
int (*func[5])(int *);
func右边是一个[]运算符,说明func是具有5个元素的数组;func的左边有一个*,说明func的元素是指针(注意这里的*不是修饰func,而是修饰func[5]的,原因是[]运算符优先级比*高,func先跟[]结合)。跳出这个括号,看右边,又遇到圆括号,说明func数组的元素是函数类型的指针,它指向的函数具有int*类型的形参,返回值类型为int。

也可以记住2个模式:
type (*)(....)函数指针 
type (*)[]数组指针


虚函数表

 

C++ 了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的。简称为V-Table。在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承、覆盖的问题,保证其容真实反应实际的函数。这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数。

 

这里我们着重看一下这张虚函数表。C++的编译器应该是保证虚函数表的指针存在于对象实例中最前面的位置(这是为了保证取到虚函数表的有最高的性能——如果有多层继承或是多重继承的情况下)。 这意味着我们通过对象实例的地址得到这张虚函数表,然后就可以遍历其中函数指针,并调用相应的函数。

 

听我扯了那么多,我可以感觉出来你现在可能比以前更加晕头转向了。 没关系,下面就是实际的例子,相信聪明的你一看就明白了。

 

假设我们有这样的一个类:

 

class Base {

     public:

            virtual void f() { cout << "Base::f" << endl; }

            virtual void g() { cout << "Base::g" << endl; }

            virtual void h() { cout << "Base::h" << endl; }

 

};

 

按照上面的说法,我们可以通过Base的实例来得到虚函数表。 下面是实际例程:

 

          typedef void(*Fun)(void);

 

            Base b;

 

            Fun pFun = NULL;

 

            cout << "虚函数表地址:" << (int*)(&b) << endl;

            cout << "虚函数表 — 第一个函数地址:" << (int*)*(int*)(&b) << endl;

 

            // Invoke the first virtual function 

            pFun = (Fun)*((int*)*(int*)(&b));

            pFun();

 

实际运行经果如下:(Windows XP+VS2003,  Linux 2.6.22 + GCC 4.1.3)

 

虚函数表地址:0012FED4

虚函数表 — 第一个函数地址:0044F148

Base::f

 

 

通过这个示例,我们可以看到,我们可以通过强行把&b转成int *,取得虚函数表的地址,然后,再次取址就可以得到第一个虚函数的地址了,也就是Base::f(),这在上面的程序中得到了验证(把int*强制转成了函数指针)。通过这个示例,我们就可以知道如果要调用Base::g()Base::h(),其代码如下:

 

            (Fun)*((int*)*(int*)(&b)+0);  // Base::f()

            (Fun)*((int*)*(int*)(&b)+1);  // Base::g()

            (Fun)*((int*)*(int*)(&b)+2);  // Base::h()

 

这个时候你应该懂了吧。什么?还是有点晕。也是,这样的代码看着太乱了。没问题,让我画个图解释一下。如下所示:

注意:在上面这个图中,我在虚函数表的最后多加了一个结点,这是虚函数表的结束结点,就像字符串的结束符“/0”一样,其标志了虚函数表的结束。这个结束标志的值在不同的编译器下是不同的。在WinXP+VS2003下,这个值是NULL。而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,这个值是如果1,表示还有下一个虚函数表,如果值是0,表示是最后一个虚函数表。

 

 

下面,我将分别说明“无覆盖”和“有覆盖”时的虚函数表的样子。没有覆盖父类的虚函数是毫无意义的。我之所以要讲述没有覆盖的情况,主要目的是为了给一个对比。在比较之下,我们可以更加清楚地知道其内部的具体实现。

 

一般继承(无虚函数覆盖)

 

下面,再让我们来看看继承时的虚函数表是什么样的。假设有如下所示的一个继承关系:

 

 

请注意,在这个继承关系中,子类没有重载任何父类的函数。那么,在派生类的实例中,其虚函数表如下所示:

 

对于实例:Derive d; 的虚函数表如下:

 

我们可以看到下面几点:

1)虚函数按照其声明顺序放于表中。

2)父类的虚函数在子类的虚函数前面。

 

我相信聪明的你一定可以参考前面的那个程序,来编写一段程序来验证。

 

 

 

一般继承(有虚函数覆盖)

 

覆盖父类的虚函数是很显然的事情,不然,虚函数就变得毫无意义。下面,我们来看一下,如果子类中有虚函数重载了父类的虚函数,会是一个什么样子?假设,我们有下面这样的一个继承关系。

 

 

 

为了让大家看到被继承过后的效果,在这个类的设计中,我只覆盖了父类的一个函数:f()。那么,对于派生类的实例,其虚函数表会是下面的一个样子:

 

 

我们从表中可以看到下面几点,

1)覆盖的f()函数被放到了虚表中原来父类虚函数的位置。

2)没有被覆盖的函数依旧。

 

这样,我们就可以看到对于下面这样的程序,

 

            Base *b = new Derive();

 

            b->f();

 

b所指的内存中的虚函数表的f()的位置已经被Derive::f()函数地址所取代,于是在实际调用发生时,是Derive::f()被调用了。这就实现了多态。

 

 

 

多重继承(无虚函数覆盖)

 

下面,再让我们来看看多重继承中的情况,假设有下面这样一个类的继承关系。注意:子类并没有覆盖父类的函数。

 

 

 

对于子类实例中的虚函数表,是下面这个样子:

 

我们可以看到:

1)  每个父类都有自己的虚表。

2)  子类的成员函数被放到了第一个父类的表中。(所谓的第一个父类是按照声明顺序来判断的)

 

这样做就是为了解决不同的父类类型的指针指向同一个子类实例,而能够调用到实际的函数。

 

 

 

 

多重继承(有虚函数覆盖)

 

下面我们再来看看,如果发生虚函数覆盖的情况。

 

下图中,我们在子类中覆盖了父类的f()函数。

 

 

 

下面是对于子类实例中的虚函数表的图:

 

 

我们可以看见,三个父类虚函数表中的f()的位置被替换成了子类的函数指针。这样,我们就可以任一静态类型的父类来指向子类,并调用子类的f()了。如:

 

            Derive d;

            Base1 *b1 = &d;

            Base2 *b2 = &d;

            Base3 *b3 = &d;

            b1->f(); //Derive::f()

            b2->f(); //Derive::f()

            b3->f(); //Derive::f()

 

            b1->g(); //Base1::g()

            b2->g(); //Base2::g()

            b3->g(); //Base3::g()

注意(安全性)

 每次写C++的文章,总免不了要批判一下C++。这篇文章也不例外。通过上面的讲述,相信我们对虚函数表有一个比较细致的了解了。水可载舟,亦可覆舟。下面,让我们来看看我们可以用虚函数表来干点什么坏事吧。

 

一、通过父类型的指针访问子类自己的虚函数

我们知道,子类没有重载父类的虚函数是一件毫无意义的事情。因为多态也是要基于函数重载的。虽然在上面的图中我们可以看到Base1的虚表中有Derive的虚函数,但我们根本不可能使用下面的语句来调用子类的自有虚函数:

 

          Base1 *b1 = new Derive();

            b1->f1();  //编译出错

 

任何妄图使用父类指针想调用子类中的未覆盖父类的成员函数的行为都会被编译器视为非法,所以,这样的程序根本无法编译通过。但在运行时,我们可以通过指针的方式访问虚函数表来达到违反C++语义的行为。(关于这方面的尝试,通过阅读后面附录的代码,相信你可以做到这一点)

 

 

二、访问non-public的虚函数

另外,如果父类的虚函数是private或是protected的,但这些非public的虚函数同样会存在于虚函数表中,所以,我们同样可以使用访问虚函数表的方式来访问这些non-public的虚函数,这是很容易做到的。

 

如:

 

class Base {

    private:

            virtual void f() { cout << "Base::f" << endl; }

 

};

 

class Derive : public Base{

 

};

 

typedef void(*Fun)(void);

 

void main() {

    Derive d;

    Fun  pFun = (Fun)*((int*)*(int*)(&d)+0);

    pFun();

}

 

 



注:上述内容中,

转自51CTO.com的博客http://developer.51cto.com/art/201002/182348.htm,他的博客http://www.51cto.com/

<内联函数>转自大龙的博客http://www.cppblog.com/fwxjj/archive/2007/04/20/22352.html,他的博客http://www.cppblog.com/fwxjj/

转自uniqueliu的博客http://www.cnblogs.com/uniqueliu/archive/2011/07/10/2102238.html,他的博客http://www.cnblogs.com/uniqueliu/

<虚函数表>转自陈皓的博客http://blog.csdn.net/haoel/article/details/1948051/,他的博客http://my.csdn.net/haoel

转自漫步云端的博客http://www.cnblogs.com/charley_yang/archive/2010/12/15/1907384.html,他的博客http://www.cnblogs.com/charley_yang/

(想看更详细的内容,或有任何的疑问、看法、建议,请访问作者原博客,留下你的宝贵意见。)


你可能感兴趣的:(C++)