- 千问QwQ,推理界“新王”!
人工智能
0前言思考、质疑、理解,人类探索未知的永恒追求。探索之路,QwQ如一位怀抱无尽好奇的学徒,以思考和疑问照亮前路。QwQ深知自己一无所知,而这种认知正是其好奇心的源泉。探寻答案过程,始终保持自省,以理性之光审视每个假设,在不同思维维度中穿行,追寻更深层真理。但正如所有智慧的追求者,QwQ也有局限,它也只是漫长旅程的一个初步阶段——仍在学习如何行走于理性之路。思绪偶尔飘散,答案或许未尽完善,智慧仍在积
- 2021 西电 软工 计组 期末试题题型(回忆版)
_ZCWzy
今天刚考完。这是帮助后面的学习学妹复习而撰写的,数据我记不住了,2020年的考试题型请参考:https://github.com/LevickCG/Happy-SE-in-XDU/blob/master/%E8%AE%A1%E7%BB%84I/2020_final.md虽然2020有疫情奖励难度变低,但是2021和2020我感觉难度没什么太大的差别同样的,如果你想冲高分,一定要把课后习题全部搞懂。
- QML学习 —— 34、视频媒体播放器(附源码)
[無限進步]
QMLqml音视频媒体播放器
效果 说明 您可以单独使用MediaPlayer播放音频内容(如音频),也可以将其与VideoOutput结合使用以渲染视频。VideoOutput项支持未转换、拉伸和均匀缩放的视频演示。有关拉伸均匀缩放演示文稿的描述,请参见fillMode属性描述。 播放可能出错问题出现的问题: DirectShowPlayerService::doRender:Unresolvederrorc
- Spark 源码分析(一) SparkRpc中序列化与反序列化Serializer的抽象类解读 (正在更新中~)别人能写出来的,你也能行!多学习别人的思路,形成自己的思路,高薪工作奔你而来!
小白的大数据历程
Spark源码解析开发语言spark大数据分布式scala
后一篇链接在这接上一章请先看解读序列化抽象类第一部分(这是一个链接)目录接上一章请先看解读序列化抽象类第一部分2.Java序列化实现类JavaSerializer(1)JavaSerializationStream类代码实际例子1:序列化(2)JavaDeserializationStream代码实际例子2:反序列化Spark源码下类图在学习过程中,抓住主要问题,请思考问题为什么Kryo序列化更加
- Go语言的学习路线
技术的探险家
包罗万象golang开发语言后端
Go语言的学习路线随着科技的迅速发展,编程语言也在不断进化,Go(又称Golang)作为一种现代化的编程语言,其简单性、高效性和强大的并发支持吸引了越来越多的开发者。本文将为您提供一条系统的Go语言学习路线,帮助您从零基础逐步掌握这门语言。一、Go语言简介Go语言是Google于2007年开发的一种开源编程语言,旨在提高编程的效率,与传统的编程语言相比,Go具有以下几个显著的优点:简洁性:Go设计
- 洞察事件驱动架构的灵魂——Java中实现高度可观察性的艺术
墨夶
Java学习资料1架构java开发语言
在当今的软件开发领域,构建一个既能够高效响应变化又具备强大监控能力的应用系统已成为开发者们追求的目标。事件驱动架构(EDA)因其天然的支持异步处理、松耦合特性而备受青睐。然而,如何确保这样一个复杂且动态变化的系统具有良好的可见性和可控性?这就需要我们深入探讨“可观察性”这一概念,并学习如何通过精心设计让Java应用程序中的每一个事件都能被清晰地追踪和理解。本文将带您走进事件驱动架构的核心,揭示增强
- Next.js服务器操作:优势、局限与审慎应用
exploration-earth
javascript服务器开发语言
类似于任何技术,它们亦非尽善尽美,故而保持警觉至关重要。通过亲身经历中的挫折汲取了教训,现将之与诸位共勉。一大诟病在于潜在的紧密绑定问题。若服务器端代码嵌入组件之中,则可能导致代码库模块化程度削弱,维护成本攀升。后端逻辑的任何变动或许都将迫使前端相应更新,反之亦然。对于追求关注点严格分离的大型项目或团队而言,这无疑构成了严峻挑战。唯有秉持严谨的纪律与条理,方能避免代码库陷入混乱。再者,便是学习曲线
- 机器学习02-发展历史补充
坐吃山猪
机器学习机器学习人工智能
机器学习02-发展历史补充文章目录机器学习02-发展历史补充1-机器学习个人理解1-初始阶段:统计学习和模式识别(20世纪50年代至80年代)2-第二阶段【集成时代】+【核方法】(20世纪90年代至2000年代初期)3-第三阶段【特征工程】+【模型优化】(2000年代中期至2010年代初期)4-大规模数据和分布式计算(2010年代中后期)5-自动化机器学习和特征选择(2010年代末至今)2-神经网
- 2024-12-01百度TTS语音
坐吃山猪
AI训练AI编程
百度TTS语音个人尝试代码仓库:https://gitee.com/enzoism/chrome_tampermonkey鸣谢:感谢每一位无私奉献的传道者,在此不一一具名!1-学习目标1)了解百度TTS语音2)使用百度TTS语音2-参考网址个人尝试代码仓库:https://gitee.com/enzoism/chrome_tampermonkey1-应用列表查看地址:https://console
- OpenSPG docker 安装教程
@comefly
NLPdockeropenspg知识图谱llm
文章目录前言自述一、OpenSPG1.介绍二、安装步骤1.安装服务端2.客户端部署前言自述我最近是想结合chatglm3-6b和知识图谱做一个垂直领域的技术规范的问答系统,过程中也遇到了很多困难,在模型微调上,在数据集收集整理上,在知识图谱的信息抽取上等等,咬咬牙,多学习就可以解决,本文主要写一下利用openspg做技术规范的信息抽取的部署安装过程。一、OpenSPG1.介绍OpenSPG是蚂蚁集
- 麒麟操作系统基础知识保姆级教程(十五)权限管理
小屁不止是运维
基础知识linux服务器网络运维学习bash
如果你想拥有你从未拥有过的东西,那么你必须去做你从未做过的事情之前咱们了解过了麒麟操作系统的sudo提权,那么都有哪些关于咱们权限有哪些相关的知识呢?欢迎交流:在学习过程中如果你有任何疑问或想法,欢迎在评论区留言,我们可以共同探讨学习的内容。你的支持是我持续创作的动力!点赞、收藏与推荐:如果你觉得这篇文章对你有所帮助,请不要忘记点赞、收藏,并分享给更多的小伙伴!你们的鼓励是我不断进步的源泉!推广给
- ChatGPT大模型极简应用开发-目录
uncle_ll
#GPTchatgpt人工智能LLM大模型GPT
引言要理解ChatGPT,了解其背后的Transformer架构和GPT技术一路的演进则变得非常必要。ChatGPT背后的LLM技术使普通人能够通过自然语言完成过去只能由程序员通过编程语言实现的任务,这是一场巨大的变革。然而,人类通常容易高估技术的短期影响而低估长期影响。进一步学习关于LLM技术原理的论文、视频、图书等。在阅读这本书或者后续学习过程中,你有任何疑问都可以随时请教ChatGPT等工具
- Python数据分析高频面试题及答案
闲人编程
程序员面试python数据分析面试题核心
目录1.基础知识2.数据处理3.数据可视化4.机器学习模型5.进阶问题6.数据清洗与预处理7.数据转换与操作8.时间序列分析9.高级数据分析技术10.数据降维与特征选择11.模型评估与优化12.数据操作与转换13.数据筛选与分析14.数据可视化与报告15.数据统计与分析16.高级数据处理以下是一些Python数据分析的高频核心面试题及其答案,涵盖了基础知识、数据1.基础知识问1:Python中列表
- Thanos架构学习
qq_道可道
监控K8S与容器架构
Thanos架构学习简介Thanos有两种架构模式sidecar部署receiver部署组件概念及说明简介官网参考Thanos基于prometheus,在此基础上提供了全局指标查询,可将多个云/region的prometheus数据集中管理,并且将数据直接存储到廉价的对象存储,可以存放更久的数据(并对历史数据进行压缩与降采样),降低本地prometheus存储费用,同时可与现有的prometheu
- Pytorch 三小时极限入门教程
power-辰南
人工智能深度学习pytorch人工智能
一、引言在当今的人工智能领域,深度学习占据了举足轻重的地位。而Pytorch作为一款广受欢迎的深度学习框架,以其简洁、灵活的特性,吸引了大量开发者投身其中。无论是科研人员探索前沿的神经网络架构,还是工程师将深度学习技术落地到实际项目,Pytorch都提供了强大的支持。本教程将带你从零基础开始,一步步深入了解Pytorch的核心知识,助你顺利踏上深度学习的征程。二、Pytorch基础环境搭建安装An
- Python机器学习之XGBoost从入门到实战(基本理论说明)
雪域枫蓝
PythonAtificialIntelligence机器学习python分布式
Xgboost从基础到实战XGBoost:eXtremeGradientBoosting*应用机器学习领域的一个强有力的工具*GradientBootingMachines(GBM)的优化表现,快速有效—深盟分布式机器学习开源平台(DistributedmachinelearningCommunity,DMLC)的分支—DMLC也开源流行的深度学习库mxnet*GBM:Machine:机器学习模型
- 手把手教你使用 Python 制作贪吃蛇游戏|Python游戏
程序员CC_
Python教程python学pythonpygamepython开发语言
贪吃蛇游戏是有史以来最受欢迎的街机游戏之一。在这个游戏中,玩家的主要目标是在不撞墙或不撞墙的情况下抓住最大数量的水果。在学习Python或Pygame时,可以将创建蛇游戏视为一项挑战。这是每个新手程序员都应该接受的最好的初学者友好项目之一。学习构建视频游戏是一种有趣而有趣的学习。我们将使用Pygame来创建这个蛇游戏。Pygame是一个开源库,专为制作视频游戏而设计。它具有内置的图形和声音库。它也
- midjourney初学者必看(迅速入门)
会飞the羊
midjourney
Midjourney初步学习:基本操作流程:-新建一个服务器-在输入框里添加MJROBOT:https://discord.com/oauth2/authorize?client_id=936929561302675456&permissions=2147601472&scope=applications.commands%20bot-输入/→选择imagine开始写prompt-prompt使用
- 【数据分析岗】关于数据分析岗面试python的金典问题+解答,包含数据读取、数据清洗、数据分析、机器学习等内容
摇光~
数据分析面试python
大家好,我是摇光~,用大白话讲解所有你难懂的知识点最近和几个大佬交流了,说了很多关于现在职场面试等问题,然后也找他们问了问他们基本面试的话都会提什么问题。所以我收集了很多关于python的面试题,希望对大家面试有用。类别1:数据读取与处理问题1:如何用Python从Excel文件中读取数据?答:在Python中,可以使用pandas库从Excel文件中读取数据。pandas提供了read_exce
- 【Python篇】深入机器学习核心:XGBoost 从入门到实战
半截诗
Pythonpython机器学习深度学习分类回归数据分析XGBoost
文章目录XGBoost完整学习指南:从零开始掌握梯度提升1.前言2.什么是XGBoost?2.1梯度提升简介3.安装XGBoost4.数据准备4.1加载数据4.2数据集划分5.XGBoost基础操作5.1转换为DMatrix格式5.2设置参数5.3模型训练5.4预测6.模型评估7.超参数调优7.1常用超参数7.2网格搜索8.XGBoost特征重要性分析9.高级功能扩展9.1模型解释与可解释性9.2
- 【YOLOv8杂草作物目标检测】
stsdddd
YOLO目标检测目标检测YOLO目标检测人工智能
YOLOv8杂草目标检测算法介绍模型和数据集下载算法介绍YOLOv8在禾本科杂草目标检测方面有显著的应用和效果。以下是一些关键信息的总结:农作物幼苗与杂草检测系统:基于YOLOv8深度学习框架,通过2822张图片训练了一个目标检测模型,用于检测田间的农作物幼苗与杂草对象。该系统支持图片、视频以及摄像头进行目标检测,并能保存检测结果。系统界面可实时显示目标位置、目标总数、置信度、用时等信息。YOLO
- JavaWeb原生框架开发JSP+Servlet+JDBC案例
秦老师Q
JavaWeb基础javaservlet开发语言
目录概要功能技术名词解释技术细节1.项目列表2.网页3.Servlet小结概要JavaWeb开发案例,使用JSP、Servlet、JDBC原生框架技术,实现用户模块的功能开发,主要用于学习。功能1.注册2.登录3.用户模块3.1查询用户信息3.2删除用户信息3.3修改用户信息技术名词解释JSP:全称JavaServerPages,是由Sun公司主导创建的一种动态网页技术标准,JSP中可以编写Jav
- EL表达式与JSTL标签库详解
秦老师Q
JavaWeb基础java
前言本章主要学习EL表达式与JSTL标签库,用于简化JSP数据操作。收录JavaWeb基础系列,该系列主要学习JavaWeb开发原生框架、Servlet、JSP、request请求对象、response响应对象、Session会话对象、Filter过滤器、EL表达式、JSTL标签库、三层开发模型等知识点,欢迎童鞋们互相交流。觉得不错可以三连订阅喔。目标一、EL表达式1.概念2.语法3.示例4.EL
- MySQL第一章 dos窗口mysql命令合集(超详细!!!)一篇就够了
秦老师Q
MySQL数据库基础mysqladb数据库database
前言:本章节主要学习MySQL数据库在dos窗口下的基础命令,sql语句等相关知识点,收录于MySQL基础系列,该系列主要讲解MySQL数据库dos命令/sql约束/sql语句/sql连接查询等相关知识点,欢迎童鞋们互相交流。觉得不错可以三连订阅喔。目标:1连接Mysql1.1连接本机上的MYSQL1.2连接远程主机上的MYSQL1.3退出MYSQL命令2修改密码2.1给root加个密码ab122
- 盘点ECMAScript 2024的新提案
前端
前面我们了解了ECMAScript2024(ES15)的5个新特性,现在我们继续学习一下其他令人耳目一新的提案吧。1.模式匹配(初期阶段)JavaScript变得更智能了,有了模式匹配!想象它就像一个超强大的switch语句,可以处理复杂的数据结构。ES15允许你简单地匹配模式,而不是编写一堆嵌套的条件语句来检查对象的形状。️旧方式functioncheckAnimal(animal){if(an
- mac运行第一个java_Mac下第一个java-servelet程序
老纪聊数码
mac运行第一个java
可学习到:设置环境变量方便运行命令和编译程序。servlet-api.jar中包括了servlet相关的api和类tomcat是servlet的容器,没有容器程序跑不起来。tomcat下载地址:http://tomcat.apache.org/我下载的是:apache-tomcat-7.0.67.tar.gz解压开之后放到usr/local目录中tomcat目录启动/usr/local/apach
- Python学习day14 BBS功能和聊天室
weixin_30725467
json数据库前端ViewUI
Createdon2017年5月15日@author:louts第1课作业讲解及装饰器使用28minutesdefcheck(func):defrec(request,*args,**kargs):returnfunc(request,*args,**kargs)returnrec@checkdefindex(request,):printrequest第2课自定义装饰器扩展使用18minutes
- 【论文翻译】GOT-OCR论文翻译——General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
机器白学
论文翻译ocr论文阅读论文翻译
论文原文链接:https://arxiv.org/abs/2409.01704特别声明,本文不做任何商业用途,仅作为个人学习相关论文的翻译记录。本文对原文内容直译,一切以论文原文内容为准,对原文作者表示最大的敬意。如有任何侵权请联系我下架相关文章。目录通用OCR理论:通过统一的端到端模型迈向OCR-2.00摘要1引言2相关工作2.1传统OCR2.2基于LVLM的OCR3通用OCR理论3.1框架3.
- 深度学习(1)
浅忆へ梦微凉
深度学习人工智能深度学习学习方法python
一、torch的安装基于直接设备情况,选择合适的torch版本,有显卡的建议安装GPU版本,可以通过nvidia-smi命令来查看显卡驱动的版本,在官网中根据cuda版本,选择合适的版本号,下面是安装示例代码GPU:pipinstalltorch==2.5.0torchvision==0.20.0torchaudio==2.5.0--index-urlhttps://download.pytorc
- 提升数据科学工作流效率的10个Jupyter Notebook高级特性
JupyterNotebooks已成为数据科学家、机器学习工程师和Python开发人员的核心开发工具。其核心优势在于提供了一个集成式环境,支持代码执行、文本编辑和数据可视化的无缝整合。尽管大多数用户熟悉其基本功能,但许多能显著提升工作效率的高级特性往往被忽视。本文将介绍一些高级功能,帮助您在数据科学项目中充分发挥JupyterNotebooks的潜力。1、Magic命令:高效的命令行接口Jupyt
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比