spark 累加历史 + 统计全部 + 行转列

转载自https://www.cnblogs.com/piaolingzxh/p/5538783.html
感觉写的特别好,特别有用
spark 累加历史主要用到了窗口函数,而进行全部统计,则需要用到rollup函数

1 应用场景:

1、我们需要统计用户的总使用时长(累加历史)

2、前台展现页面需要对多个维度进行查询,如:产品、地区等等

3、需要展现的表格头如: 产品、2015-04、2015-05、2015-06

2 原始数据:

product_code event_date duration
1438 2016-05-13 165
1438 2016-05-14 595
1438 2016-05-15 105
1629 2016-05-13 12340
1629 2016-05-14 13850
1629 2016-05-15 227

3 业务场景实现

3.1 业务场景1:累加历史:

如数据源所示:我们已经有当天用户的使用时长,我们期望在进行统计的时候,14号能累加13号的,15号能累加14、13号的,以此类推

3.1.1 spark-sql实现

//spark sql 使用窗口函数累加历史数据

sqlContext.sql(
"""
  select pcode,event_date,sum(duration) over (partition by pcode order by event_date asc) as sum_duration
  from userlogs_date
""").show
+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         760|
| 1438|2016-05-15|         865|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       26190|
| 1629|2016-05-15|       26417|
+-----+----------+------------+

3.1.2 dataframe实现

//使用Column提供的over 函数,传入窗口操作
import org.apache.spark.sql.expressions._
val first_2_now_window = Window.partitionBy("pcode").orderBy("event_date")
df_userlogs_date.select(
    $"pcode",
    $"event_date",
    sum($"duration").over(first_2_now_window).as("sum_duration")
).show

+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         760|
| 1438|2016-05-15|         865|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       26190|
| 1629|2016-05-15|       26417|
+-----+----------+------------+

3.1.3 扩展 累加一段时间范围内

实际业务中的累加逻辑远比上面复杂,比如,累加之前N天,累加前N天到后N天等等。以下我们来实现:

3.1.3.1 累加历史所有:

select pcode,event_date,sum(duration) over (partition by pcode order by event_date asc) as sum_duration from userlogs_date
select pcode,event_date,sum(duration) over (partition by pcode order by event_date asc rows between unbounded preceding and current row) as sum_duration from userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween(Long.MinValue,0)
Window.partitionBy("pcode").orderBy("event_date")

上边四种写法完全相等

3.1.3.2 累加N天之前,假设N=3

//如果,不想要分区,想从每月的第一天累加的当前天 可以去掉partition
select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between 3 preceding and current row) as sum_duration
 from userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween(-3,0) 

3.1.3.3 累加前N天,后M天: 假设N=3 M=5

select pcode,event_date,sum(duration) over (partition by pcode order by
 event_date asc rows between 3 preceding and 5 following ) as sum_duration
 from userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween(-3,5)

3.1.3.4 累加该分区内所有行

select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between unbounded preceding and unbounded following ) 
as sum_duration from userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween
(Long.MinValue,Long.MaxValue)

总结如下:
preceding:用于累加前N行(分区之内)。若是从分区第一行头开始,则为 unbounded。 N为:相对当前行向前的偏移量
following :与preceding相反,累加后N行(分区之内)。若是累加到该分区结束,则为 unbounded。N为:相对当前行向后的偏移量
current row:顾名思义,当前行,偏移量为0
说明:上边的前N,后M,以及current row均会累加该偏移量所在行

3.1.3.4 实测结果

累加历史:分区内当天及之前所有 写法
1:select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc) as sum_duration from userlogs_date




+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         760|
| 1438|2016-05-15|         865|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       26190|
| 1629|2016-05-15|       26417|
+-----+----------+------------+

累加历史:分区内当天及之前所有 写法2:
select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between unbounded preceding and current row) as 
sum_duration from userlogs_date



+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         760|
| 1438|2016-05-15|         865|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       26190|
| 1629|2016-05-15|       26417|
+-----+----------+------------+

累加当日和昨天:
select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between 1 preceding and current row) as sum_duration
 from userlogs_date



+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         760|
| 1438|2016-05-15|         700|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       26190|
| 1629|2016-05-15|       14077|
+-----+----------+------------+
累加当日、昨日、明日:
select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between 1 preceding and 1 following ) as sum_duration
 from userlogs_date



+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         760|
| 1438|2016-05-14|         865|
| 1438|2016-05-15|         700|
| 1629|2016-05-13|       26190|
| 1629|2016-05-14|       26417|
| 1629|2016-05-15|       14077|
+-----+----------+------------+

累加分区内所有:当天和之前之后所有:
select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between unbounded preceding and unbounded following )
 as sum_duration from userlogs_date



+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         865|
| 1438|2016-05-14|         865|
| 1438|2016-05-15|         865|
| 1629|2016-05-13|       26417|
| 1629|2016-05-14|       26417|
| 1629|2016-05-15|       26417|
+-----+----------+------------+

3.2 业务场景2:统计全部

3.2.1 spark sql实现



//spark sql 使用rollup添加all统计
sqlContext.sql(
"""
  select pcode,event_date,sum(duration) as sum_duration
  from userlogs_date_1
  group by pcode,event_date with rollup
  order by pcode,event_date
""").show()

+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| null|      null|       27282|
| 1438|      null|         865|
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         595|
| 1438|2016-05-15|         105|
| 1629|      null|       26417|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       13850|
| 1629|2016-05-15|         227|
+-----+----------+------------+



3.2.2 dataframe函数实现


//使用dataframe提供的rollup函数,进行多维度all统计
df_userlogs_date.rollup($"pcode", $"event_date").agg(sum($"duration")).
orderBy($"pcode", $"event_date")

+-----+----------+-------------+                                                
|pcode|event_date|sum(duration)|
+-----+----------+-------------+
| null|      null|        27282|
| 1438|      null|          865|
| 1438|2016-05-13|          165|
| 1438|2016-05-14|          595|
| 1438|2016-05-15|          105|
| 1629|      null|        26417|
| 1629|2016-05-13|        12340|
| 1629|2016-05-14|        13850|
| 1629|2016-05-15|          227|
+-----+----------+-------------+


  3.3 行转列 ->pivot

 

 
pivot目前还没有sql语法,先用df语法吧


复制代码
val userlogs_date_all = sqlContext.sql("select dcode, pcode,event_date,
sum(duration) as duration from userlogs group by dognum,
 pcode,event_date ")
userlogs_date_all.registerTempTable("userlogs_date_all")
val dates = userlogs_date_all.select($"event_date").map
(row => row.getAs[String]("event_date")).distinct().collect().toList
userlogs_date_all.groupBy($"dcode", $"pcode").pivot("event_date", dates)
.sum("duration").na.fill(0).show

+-----------------+-----+----------+----------+----------+----------+
|            dcode|pcode|2016-05-26|2016-05-13|2016-05-14|2016-05-15|
+-----------------+-----+----------+----------+----------+----------+
|         F2429186| 1438|         0|         0|       227|         0|
|        AI2342441| 1438|         0|         0|         0|       345|
|       A320018711| 1438|         0|       939|         0|         0|
|         H2635817| 1438|         0|       522|         0|         0|
|         D0288196| 1438|         0|       101|         0|         0|
|         Y0242218| 1438|         0|      1036|         0|         0|
|         H2392574| 1438|         0|         0|       689|         0|
|         D2245588| 1438|         0|         0|         1|         0|
|         Y2514906| 1438|         0|         0|       118|         4|
|         H2540419| 1438|         0|       465|       242|         5|
|         R2231926| 1438|         0|         0|       305|         0|
|         H2684591| 1438|         0|       136|         0|         0|
|         A2548470| 1438|         0|       412|         0|         0|
|         GH000309| 1438|         0|         0|         0|         4|
|         H2293216| 1438|         0|         0|         0|       534|
|         R2170601| 1438|         0|         0|         0|         0|
|B2365238;B2559538| 1438|         0|         0|         0|         0|
|         BQ005465| 1438|         0|         0|       642|        78|
|        AH2180324| 1438|         0|       608|       146|        36|
|         H0279306| 1438|         0|       490|         0|         0|
+-----------------+-----+----------+----------+----------+----------+
附录

下面是这两个函数的官方api说明:
org.apache.spark.sql.scala



1 


def rollup(col1: String, cols: String*): GroupedData 

Create a multi-dimensional rollup for the current DataFrame using the specified columns, so we can run aggregation on them. See GroupedData for all the available aggregate functions.
This is a variant of rollup that can only group by existing columns using column names (i.e. cannot construct expressions).

// Compute the average for all numeric columns rolluped by department and group.
df.rollup("department", "group").avg()

// Compute the max age and average salary, rolluped by department and gender.
df.rollup($"department", $"gender").agg(Map(
  "salary" -> "avg",
  "age" -> "max"
))


def rollup(cols: Column*): GroupedData
Create a multi-dimensional rollup for the current DataFrame using the specified columns, so we can run aggregation on them. See GroupedData for all the available aggregate functions.
df.rollup($"department", $"group").avg()

// Compute the max age and average salary, rolluped by department and gender.
df.rollup($"department", $"gender").agg(Map(
  "salary" -> "avg",
  "age" -> "max"
))


org.apache.spark.sql.Column.scala



def over(window: WindowSpec): Column
Define a windowing column.

val w = Window.partitionBy("name").orderBy("id")
df.select(
  sum("price").over(w.rangeBetween(Long.MinValue, 2)),
  avg("price").over(w.rowsBetween(0, 4))
)

你可能感兴趣的:(spark)