- 优化 Flink 消费 Kafka 数据的速度:实战指南
Ray.1998
大数据flinkkafka大数据
在使用Flink消费Kafka数据时,你可能会遇到消费速率较慢的问题。本文将从Kafka并行消费、批量拉取、Checkpoint频率、ConsumerPoll速率以及Flink任务Slot资源等多个方面,详细解析如何优化Flink消费Kafka的速度。1.增加Kafka并行消费(提高并行度)问题Flink默认的Kafka消费者并行度可能较低,导致消费速度无法充分利用Kafka的吞吐能力。✅解决方案
- 【Flink实战】Flink网络内存和托管内存
roman_日积跬步-终至千里
#flink实战flink网络服务器
文章目录一、网络内存与托管内存1.网络内存1.1.网络内存的主要作用1.2.网络内存配置项2.托管内存二、网络内存与托管内存的关系1、互相依赖,优化执行性能2、基于任务特性设置内存分配3、内存竞争与背压机制网络内存主要负责Taskmanager之间的网络数据传输的内存,托管内存主要负责Flink的状态计算,比如window等操作。一、网络内存与托管内存1.网络内存网络内存:主要用于任务间(不同的T
- 【Flink 实战】Flink 中 Akka 通信与内存占用分析
roman_日积跬步-终至千里
#flink实战flink大数据
文章目录一、Akka通信需要的内存二、Akka通信的超时和建议配置1.超时配置项调整建议2.常见调整例子JobManager和TaskManager之间的通信是通过Akka实现的。Akka是Flink中一个分布式通信框架,负责处理集群内各个组件之间的消息传递、任务调度、状态更新以及故障恢复等操作。在这个过程中,Akka的通信机制会消耗一定的内存,特别是在消息传递、队列管理和任务调度过程中。本文将详
- 鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
flink大数据实时计算
摘要:本文整理自鹰角大数据开发工程师,ApacheHudiContributor朱正军老师在FlinkForwardAsia2024生产实践(二)专场中的分享。主要分为以下四个部分:一、鹰角数据平台架构二、数据湖选型三、湖仓一体建设四、未来展望一、鹰角数据平台架构首先给大家介绍一下鹰角目前的数据平台架构。在介绍之前,关于鹰角我先给大家做简单的介绍。1.1关于鹰角鹰角网络,也称为HYPERGRYPH
- mysql实时同步到es
数据库
测试了多个方案同步,最终选择oceanu产品,底层基于Flinkcdc1、实时性能够保证,binlog量很大时也不产生延迟2、配置SQL即可完成,操作上简单下面示例mysql的100张分表实时同步到es,优化备注等文本字段的like查询创建SQL作业CREATETABLEfrom_mysql(idint,cidintNOTNULL,gidbigintNOTNULL,contentvarchar,c
- Flink CDC报错ArrayIndexOutOfBoundsException解决思路
学亮编程手记
大数据flinkdoris
FlinkCDC用两个并行度会报错。一个并行度就不会报错。不知道是什么原因?同步java.lang.ArrayIndexOutOfBoundsException?解决思路看日志,应该是mysql文本字段中有换行符之类的,应该会有一个url的报错提示,然后curl那个url看具体报错。这个问题可能是由于FlinkCDC的并行度设置不正确导致的。当您尝试使用两个并行度时,可能会遇到数组越界异常(jav
- Flink 源码笔记03—StreamGraph到JobGraph
董嘻嘻
Flink源码笔记flinkjavabigdata
文章目录简介入口函数traverseStreamGraphAndGenerateHashesgenerateDeterministicHashgenerateUserSpecifiedHashsetChainingisChainable简介JobGraph可以认为是StreamGraph的优化图,它将一些符合特定条件的operators合并成一个operatorchain,以减少数据在节点之间序列
- flink核心特性
24k小善
flink大数据java架构
ApacheFlink核心特性详解一、流处理与批处理的统一Flink的核心设计理念之一是将流处理和批处理统一在一个框架中。这种统一性使得Flink在处理实时数据和批量数据时具有高度的灵活性和一致性。1.流处理与批处理的统一计算引擎流处理作为批处理的特例:Flink将批处理视为有限流(FiniteStream),从而实现了流处理和批处理的统一。统一API:Flink提供了DataStream和Dat
- flink反压详解
24k小善
flink架构大数据AI编程
Flink背压/反压(Backpressure)详解在ApacheFlink中,背压(Backpressure)是一个常见的性能问题,通常表现为数据流在某些节点处积压,导致整体处理速度下降甚至停滞。背压的发生可能源于硬件资源限制、任务逻辑复杂性、数据分布不均或外部系统瓶颈等因素。本文将从多个角度详细讲解Flink的背压问题,包括其成因、影响以及解决方案。一、什么是Flink背压?背压是指在数据流处
- 十四、Flink源码阅读--JobGraph生成过程
灰二和杉菜
ApacheFlinkFlinkJobGraph生成源码分析
上篇分析了client整个提交任务过程,最终提交的是一个JobGraph对象,那么是如何从jar或sql任务转为JobGraph的呢,这篇我们仔细研究一下,版本为1.6.3源码分析上篇我们介绍client端提交任务最终会到到ClusterClient.run()方法,就在这个方法中封装了JobGraph的步骤。publicJobSubmissionResultrun(FlinkPlancompil
- 最新Apache Hudi 1.0.1源码编译详细教程以及常见问题处理
Toroidals
大数据组件安装部署教程hudi1.0.1源码编译教程最新
1.最新ApacheHudi1.0.1源码编译2.Flink、Spark、Hive集成Hudi1.0.13.flinkstreaming写入hudi目录1.版本介绍2.安装maven2.1.下载maven2.2.设置环境变量2.3.添加Maven镜像3.编译hudi3.1.下载hudi源码3.2.修改hudi源码3.3.修改hudi-1.0.1/pom.xml,注释或去掉410行内容3.4.安装c
- Flink提交pyflink任务
Leo_Hu666
flink大数据pythonpyflink
1.官方文档:flink1.14:https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/deployment/cli/#submitting-pyflink-jobsflink1.18:https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deploy
- Flink在指定时间窗口内统计均值,超过阈值后报警
小的~~
flink均值算法大数据
1、需求统计物联网设备收集上来的温湿度数据,如果5分钟内的均值超过阈值(30摄氏度)则发出告警消息,要求时间窗口和阈值可在管理后台随时修改,实时生效(完成当前窗口后下一个窗口使用最新配置)。物联网设备的数据从kafka中读取,配置数据从mysql中读取,有个管理后台可以调整窗口和阈值大小。2、思路使用flink的双流join,配置数据使用广播流,设备数据使用普通流。3、实现代码packagecu.
- Flink SQL 优化实战 - 维表 JOIN 优化
腾讯云大数据
大数据数据库flinksql
作者:龙逸尘,腾讯CSIG高级工程师背景介绍维表(DimensionTable)是来自数仓建模的概念。在数仓模型中,事实表(FactTable)是指存储有事实记录的表,如系统日志、销售记录等,而维表是与事实表相对应的一种表,它保存了事实表中指定属性的相关详细信息,可以跟事实表做关联;相当于将事实表上经常重复出现的属性抽取、规范出来用一张表进行管理。在实际生产中,我们经常会有这样的需求,以原始数据流
- 阿里云RDS到亚马逊云RDS的实时数据同步方案详解
ivwdcwso
运维阿里云云计算awskda数据同步
1.需求背景在当今的多云环境中,企业经常需要在不同云平台之间同步数据。本文将详细介绍如何实现从阿里云RDSMySQL数据库到亚马逊云RDSMySQL数据库的实时数据同步。这种同步对于数据备份、跨区域数据访问、数据分析等场景都非常有用。2.方案概述我们将使用AWSKinesisDataAnalytics(KDA)作为核心组件来实现这个实时同步方案。KDA基于ApacheFlink,支持使用SQL或J
- Flink 安装阿里云docker compose部署及相关组件
vellerzheng
部署运维flinkdocker大数据
Flink安装脚本文件version:"2.2"services:jobmanager:image:flink:1.15.2-java11expose:-"6123"ports:-"8081:8081"command:jobmanagervolumes:-/home:/homeenvironment:-JOB_MANAGER_RPC_ADDRESS=jobmanagerprivileged:tru
- 使用Docker搭建Flink集群
O_1CxH
Flink大数据Kafka大数据dockerflink容器
目录使用Docker搭建Flink集群docker-compose一键搭建步骤附录参考资料使用Docker搭建Flink集群在学习大数据框架的时候,需要一个真实的环境。我们知道,像spark、flink这些计算框架都有多种运行模式:在本地使用多线程模拟集群真正的分布式集群如果直接在IDE(Intellj)里面编译和运行写好的程序,实际上是用的前一种运行模式;如果想尝试真正的生产环境中任务的提交和管
- Spark 和 Flink
信徒_
sparkflink大数据
Spark和Flink都是目前流行的大数据处理引擎,但它们在架构设计、应用场景、性能和生态方面有较大区别。以下是详细对比:1.架构与核心概念方面ApacheSparkApacheFlink计算模型微批(Micro-Batch)为主,但支持结构化流(StructuredStreaming)原生流(TrueStreaming),基于事件驱动处理方式以RDD、DataFrame/Dataset作为核心抽
- Flink-k8s弹性扩缩容原理和部署步骤
spring208208
flinkkubernetes贪心算法
背景和现状目前行内提交flink作业采用Nativekubernetes模式,提交作业时会指定并行度和taskmanager使用的内存及cpu数量。这种情况下会导致在作业运行高峰可能存在资源不足问题运行低峰又会造成资源浪费,这种粗放的使用资源的模式在实时计算业务量不多的时候还可以勉强接受,而随着实时计算业务的增多,则会造成大量的资源浪费和性能瓶颈。为了使存储和计算资源得到更加合理有效的使用,能跟据
- 20250124 Flink 增量聚合 vs 全量聚合
靈臺清明
Flinkflink
1.增量聚合vs全量聚合(1)增量聚合(ReduceFunction/AggregateFunction)工作方式:逐步计算:每一条数据到达窗口时,立即与当前聚合结果结合,生成新的中间结果。仅保存中间状态:内存中只保留当前的聚合值(如累加和、最大值等),不保存原始数据。触发窗口计算时:直接输出最终的聚合结果,无需遍历所有数据。示例:计算窗口内数字的和DataStreamnumbers=...;nu
- Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
大数据flink阿里云数据分析
摘要:本文整理自FlinkForwardAsia2024大会中阿里云DataWorks数据集成团队陈吉通的分享,主要分享FlinkCDC在阿里云DataWorks数据集成入湖场景的应用实践。内容分为以下四个部分:1.阿里云DataWorks数据集成介绍2.DataWorks数据集成入湖解决方案的架构和原理3.DataWorks数据集成入湖场景的产品化案例分享4.未来规划一、阿里云DataWorks
- Flink-提交job
笨鸟先-森
大数据flink
目录一、Flink流处理扩展及说明二、Flink部署三、Standalone模式四、在命令行提交job:五、在网页中提交flinkjob一、Flink流处理扩展及说明涉及:自定义线程优先级=socket流中读取数据并行度只能是11、特定的算子设定了并行度最优先2、算子没有设定并行度就是用整体运行环境设置的并行度3、环境的并行度没有设置就使用提交时候提交参数设置的并行度4、都没有设置就遵循flink
- Flink 实践教程-入门(10):Python作业的使用
腾讯云大数据
数据库大数据javapython数据分析
作者:腾讯云流计算Oceanus团队流计算Oceanus简介流计算Oceanus是大数据产品生态体系的实时化分析利器,是基于ApacheFlink构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算Oceanus以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。教程链接:Flink实践教程-入门(10):Python作业的使用-云+社区-
- pyflink作业提交的踩坑过程,看完少走两个星期弯路
Li_yi_chao
大数据
flink在努力地将Python生态和大数据生态融合,但目前的版本还不够成熟,尤其是在官方对python现有资料有限的情况下,用户想要使用python完成一个flinkjob并提交到flink平台上,还是有很多雷需要踩的。以下对pyflink环节问题,pythonjob编写到提交做了总结,可减少不必要的弯路。一、部署环境JDK1.8+&Python3.5+(3.7.6)&apache-flink1
- Paimon实战 -- paimon原理解析
阿华田512
Paimon学习必读系列paimon数据湖paimon介绍flink写入
一.简介ApachePaimon原名FlinkTableStore,2022年1月在ApacheFlink社区从零开始研发,Flink社区希望能够将Flink的Streaming实时计算能力和Lakehouse新架构优势进一步结合,促进数据在数据湖上真正实时流动起来,并为用户提供实时离线一体化的开发体验。二.基本概念1、快照(Snapshot)快照捕获表在某个时间点的状态。用户可以通过最新的快照访
- paimon实战 --核心原理和Flink应用进阶
阿华田512
Paimon学习必读系列Flink学习必读系列flink大数据flink读写paimon数据湖
简介Flink社区希望能够将Flink的Streaming实时计算能力和Lakehouse新架构优势进一步结合,推出新一代的StreamingLakehouse技术,促进数据在数据湖上真正实时流动起来,并为用户提供实时离线一体化的开发体验。Flink社区内部孵化了FlinkTableStore(简称FTS)子项目,一个真正面向Streaming以及Realtime的数据湖存储项目。2023年3月1
- 【Apache Paimon】-- 16 -- 利用 paimon-flink-action 同步 kafka 数据到 hive paimon 表中
oo寻梦in记
ApachePaimonapacheflinkkafkaapachepaimonpaimon
目录引言CDC技术概述2.1什么是CDC2.2CDC的应用场景Kafka作为CDC数据源的原理与优势3.1Kafka的基本架构3.2Kafka在CDC中的角色
- flink实时集成利器 - apache seatunnel - 核心架构详解
24k小善
flinkapache架构
SeaTunnel(原名Waterdrop)是一个分布式、高性能、易扩展的数据集成平台,专注于大数据领域的数据同步、数据迁移和数据转换。它支持多种数据源和数据目标,并可以与ApacheFlink、Spark等计算引擎集成。以下是SeaTunnel的核心架构详解:SeaTunnel核心架构SeaTunnel的架构设计分为以下几个核心模块:1.数据源(Source)功能:负责从外部系统读取数据。支持的
- Flink怎么保证Exactly - Once 语义
我明天再来学Web渗透
后端技术总结flink大数据开源开发语言
Exactly-Once语义是消息处理领域中的一种严格数据处理语义,指每条数据都只会被精确消费和处理一次,既不会丢失,也不会重复。以下从消息传递语义对比、实现方式、应用场景等方面详细介绍:与其他消息传递语义对比在消息传递中,常见三种语义:最多一次(at-most-once):消息可能丢失,但绝不会重复。至少一次(at-least-once):消息不会丢失,但可能重复。精确一次(exactly-on
- Flink内存配置和优化
Leo_Hu666
flink大数据
在ApacheFlink1.18的Standalone集群中,内存设置是一个关键配置,它直接影响集群的性能和稳定性。Flink的内存配置主要包括JobManager和TaskManager的内存分配。以下是如何在Standalone模式下配置内存的详细说明。JobManager内存配置JobManager是Flink集群的主节点,负责协调任务调度和资源管理。它的内存配置可以通过以下参数进行调整:配
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo