uboot分析

BootLoader指系统启动后,在操作系统内核运行之前运行的一段小程序。通过BootLoader,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。通常,BootLoader是严重地依赖于硬件而实现的,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的 BootLoader 几乎是不可能的。尽管如此,我们仍然可以对BootLoader归纳出一些通用的概念来,以指导用户特定的BootLoader设计与实现。

BootLoader的操作模式一般分为自启动模式和交互模式。

自启动模式:BootLoaderd从目标机上的某个固态设备上将操作系统加载到RAM中运行,整个过程没有用户的介入;

交互模式:目标机上的BootLoader将通过串口或网络等通信手段从开发板上下载内核映像和根文件系统映像等到RAM中,可以写到目标机上的固态存储介质中,或者直接进行系统的引导。也可以通过串口接收用户的命令。

BootLoader基本功能:

初始化相关硬件;

把BootLoader自搬移到内存中;

执行用户的命令(访问环境变量;通过网络/串口通信;读写RAM/Flash);

加载并执行内核。

 一个嵌入式Linux系统从软件的角度看通常可以分为四个部分:BootLoader、Linux内核、跟文件系统及用户的应用程序。BootLoader处于系统的最底层,运行于系统启动的最初阶段。

系统加电或复位后,所有CPU都会从某个地址开始执行,这是由处理器设计决定的。比如,X86的复位向量在高地址端,ARM处理器在复位时从地址0x00000000取第一条指令。嵌入式系统的开发板都要把板上ROM或Flash映射到这个地址。因此,必须把Bootloader程序存储在相应的Flash位置。系统加电后,CPU将首先执行它。

 BootLoader的启动过程可以是单阶段的,也可以是多阶段的。多阶段一般比单阶段的提供更为复杂的功能,以及更好的可移植性。从固态存储设备上启动的bootloader大多数是二阶段的启动过程。

  BootLoader 的实现依赖于CPU的体系结构,因此大多数 BootLoader 都分为stage1 和stage2 两大部分。依赖于CPU体系结构的代码,比如设备初始化代码等,通常都放在 stage1中,而且通常都用汇编语言来实现,以达到短小精悍的目的。而stage2 则通常用C 语言来实现,这样可以实现更复杂的功能,而且代码会具有更好的可读性和可移植性。

  BootLoader 的 stage1 通常包括以下步骤:

  ·硬件设备初始化;//屏蔽所有的中断、关闭处理器内部指令/数据Cache等

  ·为加载BootLoader的stage2准备RAM空间;

  ·拷贝BootLoader的stage2 到RAM空间中;

  ·设置好堆栈并将bss段清零;

  ·跳转到 stage2 的 C 入口点。

  Boot Loader的stage2通常包括以下步骤:

  ·初始化本阶段要使用到的硬件设备;

  ·检测系统内存映射(memory map);

  ·将内核映像和根文件系统映像从flash上读到 RAM 空间中;

  ·为内核设置启动参数;

  ·调用内核。

为什么bootloader的初始部分要用汇编?一种解释是有些操作必须用汇编实现,如协处理器寄存器的操作。更重要的问题在于,c程序需要一个具体的运行环境,如代码段,初始化的数据段,BSS段,栈,堆等。尤其是栈,它承担着C函数调用参数传递,局部变量的存储等工作。再者,启动时仅有Nand Flash的前4K内容在stepping stone中运行,这如何能保证C程序的完整性呢?因此,通常的做法是将第一阶段的汇编代码在单独的模块实现,并链接到程序的开始处。然后有它将完整的bootloader程序映像文件从Nand Flash中搬运至SDRAM中,并设置好上面谈到的各个段。这么以来,第二阶段的代码就会在SDRAM中运行。

第一阶段汇编代码的入口处,一般首先放置的是cpu异常的跳转代码,如IRQ,FIQ,SWI,Undef等。中断源将中断请求送至cpu的中断控制器,通过中断控制器仲裁,决定被响应与否或响应的顺序。例如IRQ异常,cpu会跳转到IRQ异常跳转指令处,该指令修改pc地址使其指向IRQ异常处理例程。在处理历程中,程序通过判断中断源的偏移量,确定该IRQ异常的具体类型,计算出这种IRQ异常的中断响应函数,这个过程是通过查阅IRQ中断向量表来实现的。IRQ中断向量表中定义了具体IRQ中断响应函数的地址,这些地址可以在第二阶段根据需要而设置,例如Timer的中断响应函数等等。

第二阶段首先做的是设置时钟。复位后,cpu使用外部时钟源,而非MPLL。通过设置MPLL,从而初始化HCLK,FCLK和PCLK,后者给cpu和外设提供稳定的时钟。接着可以对中断控制器和串口进行初始化,这样就可以通过串口向PC终端输出一些交互信息了。

接着打开MMU,指令缓存和数据缓存。这里可以设置协处理器CP15的Register 13(ProcID)为0,并建立从虚地址到物理地址的直接映射关系。

以上工作完成后,将存放于Nand Flash中的kernel和启动参数搬运到内存中的特定区域,重新设置好时钟(与内核中的保持一致),关闭MMU,指令缓存和数据缓存,跳转到内核的起始地址就可以运行了。

u-boot源码结构

    在顶层目录下有18个子目录,分别存放和管理不同的源程序。这些目录中所要存放的文件有其规则,可以分为3类。
    第1类目录与处理器体系结构或者开发板硬件直接相关;
    第2类目录是一些通用的函数或者驱动程序;
    第3类目录是u-boot的应用程序、工具或者文档。


u-boot的源码顶层目录说明

目    录                特    性                解 释 说 明
board                  平台依赖          存放开发板相关的目录文件,每一套板子对应一个目录。如RPXlite(mpc8xx)、

                                                fsc100(arm_cortexa8)、sc520_cdp(x86) 等目录,子目录仅存放与开发板相关的c文件和配置文件,

                                                不包含开发板CPU架构通用的实现文件

cpu                     平台依赖          存放CPU相关的目录文件,每一款CPU对应一个目录。例如:mpc8xx、ppc4xx、
                                               arm720t、arm_cortexa8、 xscale、i386等目录

lib_XXX               平台依赖          存放对XXX体系结构通用的文件,主要用于实现XXX平台通用的函数,如软件浮点


include                 通用                头文件和开发板配置文件,所有开发板的配置文件都在configs目录下
common               通用                通用的多功能函数实现
lib_generic            通用                通用库函数的实现
net                      通用                与网络协议栈相关的代码,如bootp协议、tftp协议、rarp协议和nfs
fs                        通用                存放支持的文件系统,如cramfs、ext2、fat、fdos、jffs2、reiserfs、ubifs、yaffs2文件系统
post                     通用                存放上电自检(Power On Self Test)程序
drivers                通用                通用的设备驱动程序,主要有串口、USB、mmc、以太网接口的驱动等
disk                    通用                硬盘接口程序
rtc                      通用                RTC实时时钟的驱动程序
api                        通用               平台无关的应用接口

examples               应用例程          一些独立运行的应用程序的例子,例如helloworld

tools                   工具                存放制作S-Record或者u-boot格式的映像等工具,例如mkimage

doc                     文档                开发使用文档

View Code
.
|-- \
|-- 123.txt
|-- api
|-- board
|-- CHANGELOG
|-- CHANGELOG-before-U-Boot-1.1.5
|-- common
|-- config.mk
|-- COPYING
|-- cpu
|-- CREDITS
|-- disk
|-- doc
|-- drivers
|-- examples
|-- fs
|-- include
|-- lib_arm
|-- lib_avr32
|-- lib_blackfin
|-- libfdt
|-- lib_generic
|-- lib_i386
|-- lib_m68k
|-- lib_microblaze
|-- lib_mips
|-- lib_nios
|-- lib_nios2
|-- lib_ppc
|-- lib_sh
|-- lib_sparc
|-- MAINTAINERS
|-- MAKEALL
|-- Makefile
|-- mkconfig
|-- nand_spl
|-- net
|-- onenand_ipl
|-- post
|-- README
|-- rules.mk
|-- System.map
|-- tags
|-- tools
|-- u-boot
|-- u-boot.bin
|-- u-boot.lds
|-- u-boot.map
`-- u-boot.srec

29 directories, 20 filesmakefile简要分析:

主目录中的Makefile是对整个工程的编译链接规则进行了描述。  
子目录中的Makfile主要是编译一些源文件并进行归档,生成一些静态库。 
Mkconfig是个脚本文件,负责对主目录中makefile进行配置的文件。创建一些符号链接,并在include目录下创建了两个文件:config.mk和config.h。

config.mk包含了uboot运行的环境,定义了主目录和子目录makefile通用的变量,包括体系结构、处理器和板子。

Config.h中指明了板子相关的配置头文件。

所有这些目录的编译连接都是由顶层目录的makefile来确定的。

1) Makefile中定义了源码及生成的目标文件存放的目录,目标文件存放目录BUILD_DIR可以通过make O=dir 指定。如果没有指定,则设定为源码顶层目录。一般编译的时候不指定输出目录,则BUILD_DIR为空。其它目录变量定义如下:
  
   #OBJTREE和LNDIR为存放生成文件的目录,TOPDIR与SRCTREE为源码所在目录
  OBJTREE := $(if $(BUILD_DIR),$(BUILD_DIR),$(CURDIR))
  SRCTREE := $(CURDIR)
   TOPDIR := $(SRCTREE)
  LNDIR := $(OBJTREE)
  export TOPDIR SRCTREE OBJTREE
  
  2)定义变量MKCONFIG:这个变量指向一个脚本,即顶层目录的mkconfig。
  
  MKCONFIG := $(SRCTREE)/mkconfig
  export MKCONFIG

在编译 U-BOOT之前,先要执行
  
  # make fsc100_config
  
   fsc100_config是Makefile的一个目标,定义如下:
  
  fsc100_config: unconfig
 @$(MKCONFIG) $(@:_config=) arm arm_cortexa8 fsc100 samsung s5pc1xx  
  

unconfig:
 @rm -f $(obj)include/config.h $(obj)include/config.mk \
  $(obj)board/*/config.tmp $(obj)board/*/*/config.tmp \
  $(obj)include/autoconf.mk $(obj)include/autoconf.mk.dep

%: %_config
 $(MAKE)

  
  显然,执行# make fsc100_config时,先执行unconfig目标,注意不指定输出目标时,obj,src变量均为空,unconfig下面的命令清理上一次执行make *_config时生成的头文件和makefile的包含文件。主要是include/config.h 和include/config.mk文件。
  
  然后才执行命令
  
     @$(MKCONFIG) $(@:_config=) arm arm_cortexa8 fsc100 samsung s5pc1xx  

  MKCONFIG 是顶层目录下的mkcofig脚本文件,后面五个是传入的参数。
  
  对于fsc100_config而言,mkconfig主要做三件事:
  
  在include文件夹下建立相应的文件(夹)软连接,
  
   #如果是ARM体系将执行以下操作:
   #ln -s asm-arm asm 
  
   #ln -s arch-s5pc1xx asm-arm/arch
   #ln -s proc-armv asm-arm/proc
  
  生成Makefile包含文件include/config.mk,内容很简单,定义了四个变量:
  
    ARCH = arm
   CPU = arm_cortexa8
   BOARD = fsc100
   VENDOR = samsung
       SOC = s5pc1xx  
  
  生成 include/config.h头文件:

then
 echo >> config.h
else
 > config.h  # Create new config file
fi
echo "/* Automatically generated - do not edit */" >>config.h

for i in ${TARGETS}  ; do
 echo "#define CONFIG_MK_${i} 1" >>config.h ;
done

cat << EOF >> config.h
#define CONFIG_BOARDDIR board/$BOARDDIR
#include
#include
#include
EOF

  
  mkconfig脚本文件的执行至此结束,继续分析Makefile剩下部分。
  
  3)包含include/config.mk,其实也就相当于在 Makefile里定义了上面四个变量而已。
  
  4) 指定交叉编译器前缀: 

# set default to nothing for native builds
ifeq ($(HOSTARCH),$(ARCH))
CROSS_COMPILE ?=
endif

ifeq (arm,$(ARCH))#这里根据ARCH变量,指定编译器前缀
CROSS_COMPILE ?= arm-cortex_a8-linux-gnueabi-
endif

  5)包含config.mk:
  
   #包含顶层目录下的config.mk,这个文件里面主要定义了交叉编译器及选项和编译规则
   # load other configuration
   include $(TOPDIR)/config.mk
  
  下面分析config.mk 的内容:
  
  @包含体系,开发板,CPU特定的规则文件:
  
   ifdef ARCH #指定预编译体系结构选项
   sinclude $(TOPDIR)/$(ARCH)_config.mk # include architecture dependend rules
   endif
   ifdef CPU #定义编译时对齐,浮点等选项
   sinclude $(TOPDIR)/cpu/$(CPU)/config.mk # include CPU specific rules
   endif
   ifdef SOC #没有这个文件
   sinclude $(TOPDIR)/cpu/$(CPU)/$(SOC)/config.mk # include SoC specific rules
   endif
  
   ifdef BOARD #指定特定板子的镜像连接时的内存基地址

   sinclude $(TOPDIR)/board/$(BOARDDIR)/config.mk # include board specific rules
   endif
  
   @定义交叉编译链工具
  
  
   # Include the make variables (CC, etc...)
   #
   AS = $(CROSS_COMPILE)as
   LD = $(CROSS_COMPILE)ld
   CC = $(CROSS_COMPILE)gcc
   CPP = $(CC) -E
   AR = $(CROSS_COMPILE)ar
   NM = $(CROSS_COMPILE)nm
   STRIP = $(CROSS_COMPILE)strip
   OBJCOPY = $(CROSS_COMPILE)objcopy
   OBJDUMP = $(CROSS_COMPILE)objdump
   RANLIB = $(CROSS_COMPILE)RANLIB
  
   @定义AR选项ARFLAGS,调试选项DBGFLAGS,优化选项OPTFLAGS
  
    预处理选项CPPFLAGS,C编译器选项CFLAGS,连接选项LDFLAGS
        LDFLAGS += -Bstatic -T $(obj)u-boot.lds $(PLATFORM_LDFLAGS)
        ifneq ($(TEXT_BASE),)
        LDFLAGS += -Ttext $(TEXT_BASE)
        endif #指定了起始地址TEXT_BASE
  
   @指定编译规则:
  
  $(obj)%.s: %.S
      $(CPP) $(AFLAGS) $(AFLAGS_$(@F)) $(AFLAGS_$(BCURDIR)) -o $@ $<
      $(obj)%.o: %.S
      $(CC)  $(AFLAGS) $(AFLAGS_$(@F)) $(AFLAGS_$(BCURDIR)) -o $@ $< -cldf
      $(obj)%.o: %.c
      $(CC)  $(CFLAGS) $(CFLAGS_$(@F)) $(CFLAGS_$(BCURDIR)) -o $@ $< -c
      $(obj)%.i: %.c
      $(CPP) $(CFLAGS) $(CFLAGS_$(@F)) $(CFLAGS_$(BCURDIR)) -o $@ $< -c
      $(obj)%.s: %.c
      $(CC)  $(CFLAGS) $(CFLAGS_$(@F)) $(CFLAGS_$(BCURDIR)) -o $@ $< -c -S  
  回到顶层makefile文件:
  
  6)U-boot需要的目标文件。
  
   OBJS = cpu/$(CPU)/start.o # 顺序很重要,start.o必须放第一位
  
  7)需要的库文件:
  
   LIBS = lib_generic/libgeneric.a
   LIBS += board/$(BOARDDIR)/lib$(BOARD).a
   LIBS += cpu/$(CPU)/lib$(CPU).a
   ifdef SOC
   LIBS += cpu/$(CPU)/$(SOC)/lib$(SOC).a
   endif
   LIBS += lib_$(ARCH)/lib$(ARCH).a
   LIBS += fs/cramfs/libcramfs.a fs/fat/libfat.a fs/fdos/libfdos.a fs/jffs2/libjffs2.a /
   fs/reiserfs/libreiserfs.a fs/ext2/libext2fs.a
   ...  
   LIBS := $(addprefix $(obj),$(LIBS))
   .PHONY : $(LIBS)
  
   根据上面的include/config.mk文件定义的ARCH、CPU、BOARD、SOC这些变量。硬件平台依赖的目录文件可以根据这些定义来确定。fsc100平台相关目录及对应生成的库文件如下。
   board/fsc100/ :库文件board/fsc100/libfsc100.a
   cpu/arm_cortexa8/ :库文件cpu/arm_cortexa8/libarm_cortexa8.a
   cpu/arm_cortexa8/s5pc1xx/ : 库文件cpu/arm_cortexa8/s5pc1xx/libs5pc1xx.a
   lib_arm/ : 库文件lib_arm/libarm.a
     
  8)最终生成的各种镜像文件:
  
   ALL = $(obj)u-boot.srec $(obj)u-boot.bin $(obj)System.map $(U_BOOT_NAND)
  
   all: $(ALL)
  
   $(obj)u-boot.hex: $(obj)u-boot
   $(OBJCOPY) ${OBJCFLAGS} -O ihex $< $@
  
   $(obj)u-boot.srec: $(obj)u-boot
   $(OBJCOPY) ${OBJCFLAGS} -O srec $< $@
  
   $(obj)u-boot.bin: $(obj)u-boot
   $(OBJCOPY) ${OBJCFLAGS} -O binary $< $@
   #这里生成的是U-boot 的ELF文件镜像
GEN_UBOOT = \
       UNDEF_SYM=`$(OBJDUMP) -x $(LIBBOARD) $(LIBS) | \
       sed  -n -e 's/.*\($(SYM_PREFIX)__u_boot_cmd_.*\)/-u\1/p'|sort|uniq`;\
       cd $(LNDIR) && $(LD) $(LDFLAGS) $$UNDEF_SYM $(__OBJS) \
           --start-group $(__LIBS) --end-group $(PLATFORM_LIBS) \
           -Map u-boot.map -o u-boot
$(obj)u-boot: depend $(SUBDIRS) $(OBJS) $(LIBBOARD) $(LIBS) $(LDSCRIPT) $(obj)u-boot.lds$(GEN_UBOOT)  
  分析一下最关键的u-boot ELF文件镜像的生成:
  
   @依赖目标depend :生成各个子目录的.depend文件,.depend列出每个目标文件的依赖文件。生成方法,调用每个子目录的make _depend。
  
   depend dep:
   for dir in $(SUBDIRS) ; do $(MAKE) -C $$dir _depend ; done
    
   @伪目标SUBDIRS: 执行tools ,examples ,post,post/cpu 子目录下面的make文件。
     SUBDIRS = tools \
       examples/standalone \
       examples/api

       .PHONY : $(SUBDIRS)

 
   $(SUBDIRS): depend
       $(MAKE) -C $@ all  
   @依赖目标$(OBJS),即cpu/start.o
  
   $(OBJS): depend
       $(MAKE) -C cpu/$(CPU) $(if $(REMOTE_BUILD),$@,$(notdir $@))

   @依赖目标$(LIBBOARD)、$(LIBS),这个目标太多,都是每个子目录的库文件*.a ,通过执行相应子目录下的make来完成:
   $(LIBBOARD): depend $(LIBS)
       $(MAKE) -C $(dir $(subst $(obj),,$@))


   $(LIBS): depend $(SUBDIRS)
       $(MAKE) -C $(dir $(subst $(obj),,$@))  
   @依赖目标$(LDSCRIPT):
  
   $(LDSCRIPT): depend
       $(MAKE) -C $(dir $@) $(notdir $@)

       @$(obj)u-boot.lds
   u-boot.lds,定义了连接时各个目标文件是如何组织的。内容如下:
  OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
      OUTPUT_ARCH(arm)
     ENTRY(_start)
     SECTIONS
     {
      . = 0x00000000;
      . = ALIGN(4);
      .text :
      {
       cpu/arm_cortexa8/start.o (.text)
       board/samsung/fsc100/lowlevel_init.o
       board/samsung/fsc100/mem_setup.o
       board/samsung/fsc100/nand_cp.o
       *(.text)
      }
      . = ALIGN(4);
      .rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) }
      . = ALIGN(4);
      .data : { *(.data) }
      . = ALIGN(4);
      .got : { *(.got) }
      __u_boot_cmd_start = .;
      .u_boot_cmd : { *(.u_boot_cmd) }
      __u_boot_cmd_end = .;
      . = ALIGN(4);
      __bss_start = .;
      .bss : { *(.bss) }
      _end = .;
      }
   @执行连接命令:
       cd $(LNDIR) && $(LD) $(LDFLAGS) $$UNDEF_SYM $(__OBJS) \
           --start-group $(__LIBS) --end-group $(PLATFORM_LIBS) \
           -Map u-boot.map -o u-bootot
  
   其实就是把start.o和各个子目录makefile生成的库文件按照LDFLAGS连接在一起,生成ELF文件u-boot 和连接时内存分配图文件u-boot.map。
  
  9)对于各子目录的makefile文件,主要是生成*.o文件然后执行AR生成对应的库文件。如lib_generic文件夹Makefile:
  
  

LIB = $(obj)libgeneric.a

COBJS-$(CONFIG_ADDR_MAP) += addr_map.o
COBJS-$(CONFIG_BZIP2) += bzlib.o
COBJS-$(CONFIG_BZIP2) += bzlib_crctable.o
COBJS-$(CONFIG_BZIP2) += bzlib_decompress.o
COBJS-$(CONFIG_BZIP2) += bzlib_randtable.o
COBJS-$(CONFIG_BZIP2) += bzlib_huffman.o
COBJS-$(CONFIG_USB_TTY) += circbuf.o
COBJS-y += crc16.o
COBJS-y += crc32.o
COBJS-y += ctype.o
COBJS-y += display_options.o
COBJS-y += div64.o
COBJS-$(CONFIG_GZIP) += gunzip.o
COBJS-$(CONFIG_LMB) += lmb.o
COBJS-y += ldiv.o
COBJS-$(CONFIG_MD5) += md5.o
COBJS-y += net_utils.o
COBJS-$(CONFIG_SHA1) += sha1.o
COBJS-$(CONFIG_SHA256) += sha256.o
COBJS-y += string.o
COBJS-y += strmhz.o
COBJS-y += time.o
COBJS-y += vsprintf.o
COBJS-$(CONFIG_ZLIB) += zlib.o
COBJS-$(CONFIG_RBTREE) += rbtree.o

COBJS := $(COBJS-y)
SRCS := $(COBJS:.o=.c)
OBJS := $(addprefix $(obj),$(COBJS))

$(LIB): $(obj).depend $(OBJS)
 $(AR) $(ARFLAGS) $@ $(OBJS)

  
  整个makefile剩下的内容全部是各种不同的开发板的*_config:目标的定义了。
  
  概括起来,工程的编译流程也就是通过执行执行一个make *_config传入ARCH,CPU,BOARD,VENDOR,SOC参数,mkconfig根据参数将include头文件夹相应的头文件夹连接好,生成 config.h。然后执行make分别调用各子目录的makefile 生成所有的obj文件和obj库文件*.a. 最后连接所有目标文件,生成镜像。不同格式的镜像都是调用相应工具由elf镜像直接或者间接生成的。



移植u-boot-1.3.4 S3C2440
一.预备知识:
1.        首先,U-Boot1.3.4还没有支持s3c2440,移植仍是用2410的文件稍作修改而成的。
2.       2440 2410的区别:
24402410的区别主要是 2440的主频更高,增加了摄像头接口和 AC‘97音频接口;寄存器方面,除了新增模  块的寄存器外,移植所要注意的是 NAND FlASH控制器的寄存器有较大的变化、芯片的时钟频率控制寄存器(芯片 PLL的寄存器)有一定的变化。其他寄存器基本是兼容的。
3.  你开发板的boot方式是什么,开发板上电以后是怎么执行的。
一般来说三星的开发板有三种启动方式: nandnorram
具体用那一种方式来启动决定于 CPU0M[0:1]这两个引脚,具体请参考 S3C2440datasheet
 
nand:对于 2440来说, CPU是不给 nand-flash分配地址空间的, nand-flash只相当于 CPU的一个外设, S3C2440做了一个从 nand-flash启动的机制。开发板一上电, CPU就自动复制
      nand-flash里面的前 4K-Bytes内容到 S3C2440内部集成的 SDRAM,然后把 4K内容所在          RAM映射到 S3C24400地址,从 0地址开始执行。这 4K的内容主要负责下面这些工          作:初始化中断矢量、设定 CPU的工作模式为 SVC32模式、屏蔽看门狗、屏蔽中断、             初始化时钟、把整个 u-boot重定向到外部 SDRAM、跳到主要的 C函数入口。
nor:  早期的时候利用 nor-flash启动的方式比较多,就是把 u-boot烧写到 nor-flash里面,        直接把 nor-flash映射到 S3C24400地址,上电从 0地址开始执行。
ram:  直接把 u-boot放到外部 SDRAM上跑,这一般 debug时候用到。
4.  u-boot程序的入口地址问题
    要理解程序的入口地址,自然想到的是连接文件,首先看看开发板相对于某个开发板的连接文件 "/board/你的开发板 /u-boot.lds",看一个 2410的例子:
ENTRY(_start)
SECTIONS
{
       . = 0x00000000;
 
       . = ALIGN(4);
       .text      :
       {
         cpu/arm920t/start.o (.text)
         *(.text)
       }
 
       . = ALIGN(4);
       .rodata : { *(.rodata) }
 
       . = ALIGN(4);
       .data : { *(.data) }
 
       . = ALIGN(4);
       .got : { *(.got) }
 
       __u_boot_cmd_start = .;
       .u_boot_cmd : { *(.u_boot_cmd) }
       __u_boot_cmd_end = .;
 
       . = ALIGN(4);
       __bss_start = .;
       .bss : { *(.bss) }
       _end = .;
}
(1) ENTRY(_start)可以看出 u-boot的入口函数是 _start,这个没错
(2) . = 0x00000000也许可以看出 _start的地址是 0x00000000,事实并不是这样的,这里的 0x00000000没效,在连接的时候最终会被 TETX_BASE所代替的,具体请参考 u-boot根目录下的 config.mk.
(3) 网上很多说法是  _start=TEXT_BASE,我想这种说法也是正确的,但没有说具体原因。
本人的理解是这样的, TEXT_BASE表示 text段的起始地址,而从
.text      :
{
  cpu/arm920t/start.o (.text)
  *(.text)
}
看,放在 text段的第一个文件就是 start.c编译后的内容,而 start.c中的第一个函数就是
_start,所以  _start应该是放在 text段的起始位置,因此说 _start=TEXT_BASE也不为过。
5.  一直不明白的U-BOOT是怎样从4Ksteppingstone跳到RAM中执行的,现在终于明白了。关键在于:
              ldr   pc, _start_armboot
_start_armboot:    .word start_armboot
这两条语句, ldr       pc, _start_armboot指令把 _start_armboot这个标签的地方存放的内容 (也即是 start_armboot)移到 PC寄存器里面, start_armboot是一个函数地址,在编译的时候给分配了一个绝对地址,所以上面语句实际上是完成了一个绝对地址的跳转。而我一直不明白的为什么在 start.S里面有很多 BL,B跳转语句都没有跳出 4Ksteppingstone,原因是他们都是相对于 PC的便宜的跳转,而不是绝对地址的跳转。还有要补充一下 LDR,MOV,LDR伪指令的区别。
LDR      R0,0x12345678   //把地址 0x12345678存放的内容放到 R0里面
MOV    R0,#x                   //把立即数 x放到 R0里面, x必须是一个 8 bits的数移到偶数次得到的数。
LDR      R0,=0x12345678        //把立即数 0x12345678放到 R0里面
6.  在移植u-boot-1.3.3以上版本的时候要注意:
    在u-boot1.3.3及以上版本Makefile有一定的变化,使得对于24x0处理器从nand启动的遇到问题。也就是网上有人说的:无法运行过lowlevel_init。其实这个问题是由于编译器将我们自己添加的用于nandboot的子函数nand_read_ll放到了4K之后造成的(到这不理解的话,请仔细看看24x0处理器nandboot原理)。我是在运行失败后,利用mini2440的4个LED调试发现u-boot根本没有完成自我拷贝,然后看了uboot根目录下的System.map文件就可知道原因。
解决办法其实很简单:
将__LIBS := $(subst $(obj),,$(LIBS)) $(subst $(obj),,$(LIBBOARD))
改为__LIBS := $(subst $(obj),,$(LIBBOARD)) $(subst $(obj),,$(LIBS))
7.   然后说一下跳转指令。ARM有两种跳转方式。
1)mov p c <跳转地址〉
 这种向程序计数器 PC直接写跳转地址,能在 4GB连续空间内任意跳转。
2)通过 B BL BLX BX可以完成在当前指令向前或者向后 32MB的地址空间的跳转(为什么是 32MB呢?寄存器是 32位的,此时的值是 24位有符号数,所以 32MB)。
B是最简单的跳转指令。要注意的是,跳转指令的实际值不是绝对地址,而是相对地址——是相对当前 PC值的一个偏移量,它的值由汇编器计算得出。
BL非常常用。它在跳转之前会在寄存器 LR(R14)中保存 PC的当前内容。 BL的经典用法如下:
       bl NEXT  ; 跳转到NEXT
       ……
    NEXT
       ……
       mov pc, lr   ; 从子程序返回。
二.开始上机移植:(红色字体为添加的内容,蓝色字体为修改的内容,下同 )
给自己的开发板取名为 qljt2440
1.       随便找个目录解压 u-boot
$tar –xjvf u-boot-1.3.4.tar.gz2
2.       进入 u-boot目录修改 Makefile (你要编译 u-boot那当然少不了配置啦 )
$cd u-boot-1.3.4
[uboot@localhost u-boot-1.3.4]$ vim Makefile  修改内容如下:
__LIBS := $(subst $(obj),,$(LIBS)) $(subst $(obj),,$(LIBBOARD))
改为
__LIBS := $(subst $(obj),,$(LIBBOARD)) $(subst $(obj),,$(LIBS))
 
sbc2410x_config: unconfig @$(MKCONFIG) $(@:_config=) arm arm920t sbc2410x NULL s3c24x0
qljt2440_config : unconfig @$(MKCONFIG) $(@:_config=) arm arm920t qljt2440 qljt s3c24x0
/*
各项的意思如下 :
       qljt2440_config : 这个名字是将来你配置板子时候用到的名字,参见 make qljt2440_config命令。
arm: CPU的架构 (ARCH)
arm920t: CPU的类型 (CPU),其对应于 cpu/arm920t子目录。
qljt2440: 开发板的型号 (BOARD),对应于 board/qljt/qljt2440目录。
qljt: 开发者 /或经销商 (vender) s3c24x0: 片上系统 (SOC)
*/
4. /board子目录中建立自己的开发板 qljt2440目录
由于我在上一步板子的开发者 /或经销商 (vender)中填了  qljt ,所以开发板 qljt2440目录一定要建在 /board子目录中的 qljt目录下  ,否则编译会出错。
[uboot@localhost u-boot-1.3.4]$ cd board
[uboot@localhost board]$ mkdir qljt qljt/qljt2440
[uboot@localhost board]$ cp -arf sbc2410x/* qljt/qljt2440/
[uboot@localhost board]$ cd qljt/qljt2440/
[uboot@localhost qljt2440]$ mv sbc2410x.c qljt2440.c
[uboot@localhost qljt2440]$ ls 可以看到下面这些文件:
       config.mk  flash.c  lowlevel_init.s   Makefile   qljt2440.c  u-boot.lds
[uboot@localhost qljt2440]$ vim Makefile
       COBJS := qljt2440.o flash.o
5.  include/configs/ 中建立开发板所需要的配置头文件
[uboot@localhost qljt2440]$ cd ../../..
[uboot@localhost u-boot-1.3.4]$ cp include/configs/sbc2410x.h include/configs/qljt2440.h
6. 测试交叉编译能否成功
1)配置
       [uboot@localhost u-boot-1.3.4]$ make qljt2440_config
       Configure for qljt2440 board…
(2)测试编译
       [uboot@localhost u-boot-1.3.4]$ make
详细信息如下:
编译信息最后两行:
       arm-linux-objcopy --gap-fill=0xff -O srec u-boot u-boot.srec
arm-linux-objcopy --gap-fill=0xff -O binary u-boot u-boot.bin
到此交叉编译成功。
三.开始针对自己的开发板移植
1.   修改 /cpu/arm920t/start.S
1.1 修改寄存器地址定义
#if defined(CONFIG_S3C2400) || defined(CONFIG_S3C2410) || defined(CONFIG_S3C2440)   
/* turn off the watchdog */
#if defined(CONFIG_S3C2400)
# define pWTCON        0x15300000
# define INTMSK        0x14400008    /* Interupt-Controller base addresses */
# define CLKDIVN    0x14800014    /* clock divisor register */
#else
# define pWTCON        0x53000000     /*该地址用来屏蔽看门狗*/
# define INTMSK        0x4A000008    /* Interupt-Controller base addresses 该地址用来屏蔽中断*/
# define INTSUBMSK    0x4A00001C  /*该地址用来屏蔽子中断*/
# define CLKDIVN    0x4C000014    /* clock divisor register 该地址用来决定FCLKHCLKPCLK的比例
*/
#define CLK_CTL_BASE        0x4c000000  /* qljt  S3C2440A.pdf中可以看出该寄存器是存放MpllUpll P254 */
#if defined(CONFIG_S3C2440)      
#define MDIV_405       0x7f << 12   /* qljt   参见P255表,同时要知道本开发板的Fin12MHz,需要的Fclk(也就
Mpll) 405MHz*/
#define PSDIV_405       0x21       /* qljt  同上,同时设定PDIVSDIV的值,PDIVSDIV参见 S3C2440A.pdf*/
#endif
#endif
1.2  修改中断禁止部分
  # if defined(CONFIG_S3C2410)
    ldr    r1, =0x7ff   // 根据2410芯片手册,INTSUBMSK11位可用,
                       //vivi 也是0x7ff,不知为什么UBoot一直没改过来。但是由于芯片复位默认
//所有的终端都是被屏蔽的,所以这个不影响工作
    ldr    r0, =INTSUBMSK
    str    r1, [r0]
# endif
# if  defined(CONFIG_S3C2440)
    ldr    r1, =0x7fff   //根据2440芯片手册,INTSUBMSK15位可用

    ldr    r0, =INTSUBMSK
    str    r1, [r0]
# endif
1.3 修改时钟设置
/*时钟控制逻辑单元能够产生s3c2440需要的时钟信号,包括CPU使用的主频FCLK,AHB总线使用的HCLK,APB总线设备使用的PCLK2440里面的两个锁相环(PLL),其中一个对应FCLKHCLKPCLK,另外一个对应 UCLK(48MHz)*/
/*注意:AHPAPB总线的简介参见“AHBAPB总线.doc  */
/* FCLK:HCLK:PCLK = 1:4:8 */
    ldr    r0, =CLKDIVN
    mov    r1, #5
    str    r1, [r0]
/*这三条协处理器命令确实不知道什么意思,在ATXJGYBC_ql.pdf中搜p15c1,只知道它们执行以后会把协处理器p15的寄存器c1的最高两位置1,但c1的最高两位是没有意义啊,弄不懂它的真正意思
不过我却知道这三条语句是从哪里出来的,详细请参考s3c2440datasheets3c2440datasheet中的R1_nFR1_iA.doc */
    mrc    p15, 0, r1, c1, c0, 0        /*read ctrl register   qljt*/
    orr    r1, r1, #0xc0000000       /*Asynchronous  qljt  改变总线模式为异步模式网上某位朋友说不知到在哪里看到过
如果FCLKHCLK不同的话就要选择这种模式的 */
    mcr    p15, 0, r1, c1, c0, 0      /*write ctrl register qljt*/

#if defined(CONFIG_S3C2440)   //  2440的主频可达533MHz,但听说设到533MHz时系统
//很不稳定,不知是不是SDRAM和总线配置的影响,所以现在先设到//405MHz,以后在改进。)
    /*now, CPU clock is 405.00 Mhz   qljt*/
    mov    r1, #CLK_CTL_BASE    /* qljt*/
    mov    r2, #MDIV_405                   /* mpll_405mhz    qljt*/
    add    r2, r2, #PSDIV_405             /* mpll_405mhz    qljt*/
    str    r2, [r1, #0x04]               /* MPLLCON qljt 实际上是设置寄存器CLK_CTL_BASE+0x04=0x4c000004的值  */
#endif

#endif    /* CONFIG_S3C2400 || CONFIG_S3C2410|| CONFIG_S3C2440 */
 
1.4 将从Flash启动改成从NAND Flash启动。(特别注意:这和2410的程序有不同,不可混用!!!是拷贝vivi的代码。)
将以下UBoot的重定向语句段:
@#if ndef         CONFIG_AT91RM9200
#if  0
#ifndef CONFIG_SKIP_RELOCATE_UBOOT
relocate:                /* relocate U-Boot to RAM        */
    adr    r0, _start        /* r0 <- current position of code   */
    ldr    r1, _TEXT_BASE        /* test if we run from flash or RAM */
    cmp     r0, r1                /* don't reloc during debug         */
    beq     stack_setup

    ldr    r2, _armboot_start
    ldr    r3, _bss_start
    sub    r2, r3, r2        /* r2 <- size of armboot            */
    add    r2, r0, r2        /* r2 <- source end address         */

copy_loop:
    ldmia    r0!, {r3-r10}        /* copy from source address [r0]    */
    stmia    r1!, {r3-r10}        /* copy to   target address [r1]    */
    cmp    r0, r2            /* until source end addreee [r2]    */
    ble    copy_loop
#endif    /* CONFIG_SKIP_RELOCATE_UBOOT */
#endif  /*CONFIG_AT91RM9200 */
然后添加:
/*下载了一个vivi源代码看了一下,还真的有下面哪一段代码*/
#ifdef CONFIG_S3C2440_NAND_BOOT   @qljt@@@@@@@@@@@@@@@@SSSSSSSSSSSSS
    @ reset NAND
/*往下四段内容都是针对S3C2440的关于NAND-FLASH的寄存器的设置,具体有什么作用,看了datasheet,有些明白有些不明白*/
    mov    r1, #NAND_CTL_BASE           
    ldr    r2, =( (7<<12)|(7<<8)|(7<<4)|(0<<0) )
    str    r2, [r1, #oNFCONF]          /* 这些宏是在include/configs/qljt2440.h中被定义的*/
    ldr    r2, [r1, #oNFCONF]  /* 还是弄不懂为什么上面一句str以后还要有这句的ldr命令?why?难道是多余的?*/

    ldr    r2, =( (1<<4)|(0<<1)|(1<<0) ) @ Active low CE Control 
    str    r2, [r1, #oNFCONT]
    ldr    r2, [r1, #oNFCONT]

    ldr    r2, =(0x6)        @ RnB Clear
    str    r2, [r1, #oNFSTAT]
    ldr    r2, [r1, #oNFSTAT]
    
    mov    r2, #0xff        @ RESET command
    strb    r2, [r1, #oNFCMD]
/*delay一段时间*/
  mov r3, #0                   @ wait
nand1: 
  add  r3, r3, #0x1
  cmp r3, #0xa
  blt   nand1
/*等待nand-flash的复位完毕信号*/
nand2:
  ldr   r2, [r1, #oNFSTAT]      @ wait ready
  tst    r2, #0x4
  beq  nand2

  ldr    r2, [r1, #oNFCONT]
 orr    r2, r2, #0x2        @ Flash Memory Chip Disable  /* 在这里先Display fansh CE先,在C函数中对falsh进行 */
str    r2, [r1, #oNFCONT]                          /* 操作的时候才enable,为什么这样操作不太清楚 */   
/*下面这段用来初始化栈指针sp和帧指针fp,至于它们的定义和作用参考文件夹
  栈指针sp和帧指针fp”里面的内容
记住它们都是与函数调用时候相关的。简单来讲就是子函数被调用以后是通过指针的相对位置来查找调用参数和局部变量的,但是由于sp经常变化,所以需要fp来协助。*/
@ get ready to call C functions (for nand_read())
  ldr   sp, DW_STACK_START       @ setup stack pointer /*sp  是指堆栈指针*/
  mov fp, #0                    @ no previous frame, so fp=0                 
@ copy U-Boot to RAM                   /*vivi里面应该是有一段是针对gpio的程序,也许使用来debug用的信号灯,这里省略了*/
         /* TEXT_BASE uboot自己的入口地址,在u-boot-1.3.4-board/qljt/qljt2440config.mk中定义
有趣的是外国人的逆向思维很厉害,它们很灵活地把它放在SDRAM的最后0x80000地方,也就是 0x33F80000
*/
  ldr   r0, =TEXT_BASE         /*r0 :  u-boot复制到ram的那个位置*/
         mov     r1, #0x0                          /*r1 :  falsh的那个位置开始复制*/
         mov r2, #0x20000                     /*r2 :  复制多大的内容*/
         bl    nand_read_ll              /* 跳到执行uboot复制的程序入口,这个函数从哪里来?也是来自vivi的,没办法*/
         tst    r0, #0x0                    /* 这里特别注意r0的值是指nand_read_ll 执行完以后的返回值,而不是上面
ldr   r0, =TEXT_BASE 的值,初学者往往在这里想不通*/   
         beq  ok_nand_read
bad_nand_read:                  /*如果读nand_read失败的话,那么sorry,重来,或者检查硬件*/
loop2:    b     loop2          @ infinite loop
ok_nand_read:
@ verify          
/*计算机就是好,很容易就可以检测我们放在SDRAM中的u-boot是不是flash中的uboot
本开发板使用的是nand-falsh的启动方式,板子一上电并不是马上进入SDRAM执行程序的。是这样的:板子一上电,S3C2440自动把nand-falsh中从0地址开始的4Kbytes复制到S3C2440集成的某个缓冲区里面(起始地址是0x00),从那里开始执行,那4K程序负责把整个uboot复制到SDRAM,然后才跳到SDRAM开始正真的UBOOT(这个技术是有个专业名字的我忘记了 ),*/
/*下面这段程序的作用就是用开始执行的4Kbytes程序跟我们复制到SDRAM中的uboot的前4K程序进行比较,从而校验*/
  mov r0, #0
  ldr   r1, =TEXT_BASE
  mov r2, #0x400     @ 4 bytes * 1024 = 4K-bytes
go_next:
  ldr   r3, [r0], #4
  ldr   r4, [r1], #4
  teq   r3, r4
  bne  notmatch
  subs r2, r2, #4
  beq  stack_setup
  bne  go_next

notmatch:
loop3:     b     loop3         @ infinite loop
#endif @ CONFIG_S3C2440_NAND_BOOT  @qljt@@@@@@@@@@@@@@@@@@EEEEEEEEE
 
1.5 在跳到 C函数执行前,也就是跳出 start.S前,添加几个 LED灯的控制,说明程序跑到这里了,移植的第一阶段完成了。
/* 本开发板上面有四个LED灯,分别接到CPU GPIO_F[4:7]这四个引脚上 */
#if defined(CONFIG_S3C2440)
@  LED1 on u-boot stage 1 is ok!
    mov    r1, #GPIO_CTL_BASE   
    add    r1, r1, #oGPIO_F
    ldr    r2,=0x5500
    str    r2, [r1, #oGPIO_CON]
    mov    r2, #0xff
    str    r2, [r1, #oGPIO_UP]
    mov    r2, #0xdf
    str    r2, [r1, #oGPIO_DAT]
#endif
1.6  “  _start_armboot:    .word start_armboot  ” 后加入:
#if defined(CONFIG_S3C2440_NAND_BOOT)
.align     2         /*??? 这里我一直不明白为什么是 .align 2,因为如果按照ARM的规则,意思是按照 22次方=4bit
方式对齐,那么就是半个字节对齐,有可能吗?*/
DW_STACK_START:  .word  STACK_BASE+STACK_SIZE-4   /* 从这里可以看出该堆栈是从高地址向低地址增长的
注意这里的STACK_BASESTACK_SIZE还没定义,在1.1节中定义 */
#endif
2. 修改include/configs/qljt2440.h文件,在结尾处添加如下内容(注意:s3c2410与s3c2440的Nand Flash控制器寄存器不同,不能混用!!):
......
/*
 * Nandflash Boot
 */
#define CONFIG_S3C2440_NAND_BOOT 1
#define STACK_BASE    0x33f00000
#define STACK_SIZE    0x8000
/* NAND Flash Controller */
#define NAND_CTL_BASE        0x4E000000
/* Offset */
#define oNFCONF            0x00       /*这些宏是在start.S中被调用的*/
#define oNFCONT            0x04
#define oNFCMD            0x08
#define oNFADDR            0x0c
#define oNFDATA            0x10
#define oNFSTAT            0x20
#define oNFECC            0x2c
/* GPIO */
#define GPIO_CTL_BASE        0x56000000
#define oGPIO_F            0x50
#define oGPIO_CON       0x0   /* R/W, Configures the pins of the port */
#define oGPIO_DAT        0x4    /* R/W,    Data register for port */
#define oGPIO_UP        0x8    /* R/W, Pull-up disable register */
#endif    /* __CONFIG_H */
 
3.  在board/qljt/qljt2440加入NAND Flash读函数文件,拷贝vivi中的nand_read.c文件到此文件夹即可,基本上大陆上移植的都是这样做的,在此把该文件的内容贴出来,目的是对一些难理解的代码进行解析:
#include

#define __REGb(x)    (*(volatile unsigned char *)(x))
#define __REGi(x)    (*(volatile unsigned int *)(x))
#define NF_BASE        0x4e000000

#define NFCONF        __REGi(NF_BASE + 0x0)
#define NFCONT        __REGi(NF_BASE + 0x4)
#define NFCMD        __REGb(NF_BASE + 0x8)
#define NFADDR        __REGb(NF_BASE + 0xC)
#define NFDATA        __REGb(NF_BASE + 0x10)
#define NFSTAT        __REGb(NF_BASE + 0x20)

//#define GPDAT        __REGi(GPIO_CTL_BASE+oGPIO_F+oGPIO_DAT)

#define NAND_CHIP_ENABLE  (NFCONT &= ~(1<<1))
#define NAND_CHIP_DISABLE (NFCONT |=  (1<<1))
#define NAND_CLEAR_RB      (NFSTAT |=  (1<<2))
#define NAND_DETECT_RB      { while(! (NFSTAT&(1<<2)) );}

#define BUSY 4
inline void wait_idle(void) {
    while(!(NFSTAT & BUSY));
    NFSTAT |= BUSY;
}

#define NAND_SECTOR_SIZE    512
#define NAND_BLOCK_MASK        (NAND_SECTOR_SIZE - 1)

/* low level nand read function */
/*下面nand_read_ll 的三个参数来自start.S里面调用nand_read_ll 前的r0r1r2*/
int nand_read_ll(unsigned char *buf, unsigned long start_addr, int size)
{
    int i, j;
/*下面这个if保证对flash的读操作是从某一页的页头开始的,从直观来看是保证start_addr[0:8]位都为0
为什么呢?因为本flash的一页的大小位512-bytes,也就是从0x00x1ff*/
    if ((start_addr & NAND_BLOCK_MASK) || (size & NAND_BLOCK_MASK)) {
        return -1;    /* invalid alignment */
    }

    NAND_CHIP_ENABLE;

    for(i=start_addr; i < (start_addr + size);) {
        /* READ0 */
        NAND_CLEAR_RB;        
         /* 到此应该可以明白s3c2440 nandflash 相关寄存器的确切含义了,就是说s3c2440里面已经集成了对nand flash
作的相关寄存器,只要你的nand flash接线符合s3c2440 datasheet的接法,就可以随便使用s3c2440 对于 nand
flash的相关寄存器,例如如果你想像nand flash写一个命令,那么只要对命令寄存器写入你的命令就可以了,s3c2440 可以自动帮你完成所有的时序动作,写地址也是一样。反过来说如果没有了对nand flash的支持,那么我们对nand falsh的操作就会增加好多对I/O口的控制,例如对CLE,ALE的控制。s3c2440已经帮我们完成了这部分工作了 */
        NFCMD = 0;

        /* Write Address */
/*下面这个送地址的过程可以说是这段程序里最难懂的一部分了,难就难于为什么送进nand flash的地址忽略了bit8
纵观整个for(i) 循环,i并不是一个随机的地址,而应该是每一页的首地址。其实nand flash并不是忽略了bit 8这个
地址,而是bit 8早就被定下来了,什么时候定下来,就是上面的NFCMD = 0;语句,本flash (K9F1208U0B)支持从
半页开始读取,从而它有两个读的命令,分别是0x00(从一页的上半页开始读 0x01(从一页的下半页开始读)
当取0x00时,bit 8=0,当取0x01 bit 8=1.*/
        NFADDR = i & 0xff;
        NFADDR = (i >> 9) & 0xff;
        NFADDR = (i >> 17) & 0xff;
        NFADDR = (i >> 25) & 0xff;

        NAND_DETECT_RB;

        for(j=0; j < NAND_SECTOR_SIZE; j++, i++) {
            *buf = (NFDATA & 0xff); /* 每读一次NANDFLASH就往IO口送下一个byte,直到送
 NAND_SECTOR_SIZE 个为止*/
            buf++;
        }
    }
    NAND_CHIP_DISABLE;
    return 0;
}
4. 修改board/qljt/qljt2440/Makefile文件,让刚刚添加的nand_read.c编译进来
......
COBJS := qljt2440.o  nand_read.o flash.o
......
/*===========================================================
到这里,应该是可以编译通过的,否则就是编辑的时候出现了错误
===========================================================*/
5. 修改 board/qljt/qljt2440/lowlevel_init.S文件
    依照开发板的内存区的配置情况 修改 board/qljt/qljt2440/lowlevel_init.S文件, :
......
/* REFRESH parameter 下面这 6个配置都可以参考 s3c2440A datasheet P210REFRESH寄存器  */
#define REFEN             0x1    /* Refresh enable */
#define TREFMD             0x0    /* CBR(CAS before RAS)/Auto refresh */
#define Trp             0x01    /* 3clk 这个值可以参考本版子上的 SDRAMdatasheet*/
#define Trc             0x3    /* 也就是 SDRAM datasheet里面的 Tsrc 7clk 本来这个地方是 Trc,但从 lowlevel_init.S里面的调用来看,应该是寄存器REFRESH
Tsrc才对,好多地方都没有改过来,我我觉得只是个名字而已,不影响结果
注意:如果这里改了,那么下面这句中的 Trc也要改为相应的 Tsrc
.word ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Trc<<18)+(Tchr<<16)+REFCNT)*/
#define Tchr             0x2    /* 3clk,这个从 lowlevel_init.S里面的调用来看是属于 REFRESH的保留位,不知道为什
么还要给他赋值 */
#define REFCNT    1259 /*这个值的算法参考 s3c2440A datasheet P210的Refresh Counter  */
 
/*下面不厌其烦地解析一下 lowlevel_init.S这个原文件 */
 
#define BWSCON  0x48000000
……
#define Tchr                      0x2   /* 3clk */
#define REFCNT                        0x0459
/**************************************/
/*1.要知道上面这些配置的最终会被用到下面SMRDATA 这个数据池里面,所以必须要明白SMRDATA 这个数据池是用
来干什么的,SMRDATA 后面每一个.word 后面防止的数据都是将要写入BWSCON 开始的寄存器的,总共有13.work ,它们后面放置的值将会分别别写入0x480000000x480000040x48000008…一直到0x4800003013个寄存器。  */
/*2.上面那些配置的值是怎样决定的呢,详细请参考s3c2440A和你所用SDRAMdatasheet。细心找总是能找到的。 */
/*3.而上面的那些配置值最终是通过下面lowlevel_init后面的这段函数写到寄存器里面的,下面对该段函数逐一分析: */
_TEXT_BASE:
         .word         TEXT_BASE
 
.globl lowlevel_init
lowlevel_init:
         /* memory control configuration */
         /* make r0 relative the current location so that it */
         /* reads SMRDATA out of FLASH rather than memory ! */
         ldr     r0, =SMRDATA
         ldr    r1, _TEXT_BASE
     sub   r0, r0, r1        /* 其实明白了前三条语句这段程序就不难懂了,归根到底就是为什么将SMRDATA 的值减
_TEXT_BASE的值?原因是这样的:我们使用的是从nandflash boot的方式,目前程序
仍然在4K-bytes ‘Steppingstone’(这里为什么突然冒出个Steppingstone’,这个就是我前面提到从nand flash 引导的方法,但不知道名字,后来重新看 s3c2440A  datasheetnand flash那一章的开头才知道)上面 运行,在SMRDATA后面的的内容仍然在Steppingstone里面。但是 SMRDATA的值是相对于_TEXT_BASE 值的地址,而且_TEXT_BASE 是放置u-boot的开始地方,所以用SMRDATA-_TEXT_BASE 就可以得到SMRDATA后面内容在Steppingstone里面 相对于地址0x00000000的放置的所在地方(相对于0x00的地址值) */
/*从这三条语句可以看出前人为了实现从nand flash启动可谓费尽心思啊! */
         ldr    r1, =BWSCON        /* Bus Width Status Controller */
         add     r2, r0, #13*4  /* 总共13个寄存器 */
0:
         ldr     r3, [r0], #4
         str     r3, [r1], #4
         cmp     r2, r0
         bne     0b
 
         /* everything is fine now */
         mov  pc, lr
 
         .ltorg         /* 数据缓冲池,上网可以查得资料 */
/* the literal pools origin */
 
SMRDATA:
   ……  
    .word ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Trc<<18)+(Tchr<<16)+REFCNT)
    .word 0xb2
    .word 0x30       /*需要注意的是CAS Latency的值在这里直接配置 */
.word 0x30
/*===========================================================
到这里,应该是可以编译通过的,否则就是编辑的时候出现了错误
===========================================================*/
 
修改 /board/qljt/qljt2440/qljt2440.c,修改这个文件主要针对下面两点:
(1) GPIO的控制
(2) PLL,毕竟s3c2410跟s3c2440不同
修改其对 GPIOPLL的配置 (请参阅 SBC2440的硬件说明和 2440芯片手册 ):  ......
#elif FCLK_SPEED==1 /* Fout = 405MHz */
//#define M_MDIV 0x5c
//#define M_PDIV 0x4
//#define M_SDIV 0x0
#define M_MDIV 0x7f
#define M_PDIV 0x2
#define M_SDIV 0x1
#elif USB_CLOCK==1
//#define U_M_MDIV 0x48
//#define U_M_PDIV 0x3
#define U_M_MDIV 0x38
#define U_M_PDIV 0x2
#define U_M_SDIV 0x2
......
/* set up the I/O ports */
gpio->GPACON = 0x007FFFFF;
// gpio->GPFCON = 0x000055AA;
gpio->GPFCON = 0x5500; /*for LED*/
......
/* arch number of S3C2440 -Board */
gd->bd->bi_arch_number = MACH_TYPE_S3C2440 ;
/* adress of boot parameters */
gd->bd->bi_boot_params = 0x30000100;
icache_enable();
dcache_enable();
gpio->GPFDAT = 0xbf; /*for LED*/
//int board_init (void)设置完成后, LED1LED2会亮起!
return 0;
}
/*===========================================================
到这里,应该是可以编译通过的,否则就是编辑的时候出现了错误
===========================================================*/
 
7. 为了实现NAND Flash的读写,再次修改/include/configs/qljt2440.h
......
/*
 * High Level Configuration Options
 * (easy to change)
 */
#define CONFIG_ARM920T        1    /* This is an ARM920T Core    */
//#define    CONFIG_S3C2410       1   /* in a SAMSUNG S3C2410 SoC     */
//#define CONFIG_SBC2410X        1   /* on a friendly-arm SBC-2410X Board  */

#define    CONFIG_S3C2440        1  /* 在前面很多地方调用到CONFIG_S3C2440 ,他是在这里定义  */
#define CONFIG_qljt2440    1  /* 针对一些本开发板配置的宏控制*/
......
/***********************************************************
 * Command definition
 ***********************************************************/
#define CONFIG_CMD_DHCP
#define CONFIG_CMD_ELF
#define CONFIG_CMD_PING    
#define CONFIG_CMD_NAND          
#define CONFIG_CMD_NET
#define CONFIG_CMD_ENV

/* this must be included AFTER the definition of CONFIG_COMMANDS (if any) */
#include
#define    CFG_LONGHELP                
/* undef to save memory        */
#define    CFG_PROMPT   "[qljt2440]#" /*这个就是你启动开发板后命令行显示的内容了*/
/*Monitor Command Prompt  */
#define    CFG_CBSIZE        256        
/* Console I/O Buffer Size    */
......
#define    CFG_LOAD_ADDR      0x30008000   /*以后linux kernel就要放在这里执行 */
 /* default load address    */

......
//#define CFG_ENV_IS_IN_FLASH       1 /这里的flash应该是指nor了,都不知道外国人为什么这么默认/
#define    CFG_ENV_IS_IN_NAND    1 /*定义这个宏的目的是为了调用nand flash类型的saveenv
因为还有其它类型存储器的saveenv,在u-boot中查看saveenv
的定义,有多少中定义就有多少种*/
/*在linux对nand flash分区的时候,给u-boot分配256k的空间(0~0x40000)
其中 u-boot.bin    [0x0~0x30000]  占192K
而   u-boot的参数 [0x30000~0x40000] 占64k
*/
#define CFG_ENV_OFFSET  0x30000         
#define CFG_ENV_SIZE         0x10000
/*注意:网上很多地方都有关于CONFIG_CMD_NAND 、CFG_NAND_LEGACY、drivers/mtd/nand/nand.c中的nand_init()函数以及board/qljt/qljt2440/qljt2440.c中的nand_init()函数这四个东西的关系,但大多说的不清不楚,我把它门的关系用表格一一列出来,请参考附录。*/
#define CFG_NAND_LEGACY                  1
/*----------------------------------------------------------------------
 * NAND flash settings
 */
#if defined (CONFIG_CMD_NAND)
#define CFG_NAND_BASE 0x4E000000     /*这个鬼东西在drivers/mtd/nand/nand.c中被调用,它
是NAND控制寄存器的基地址*/
/* NandFlash控制器在SFR区起始寄存器地址 */
#define CFG_MAX_NAND_DEVICE 1
 /* 支持的最在Nand Flash数据 */
#define SECTORSIZE 512 
/* 1页的大小 */
#define NAND_SECTOR_SIZE SECTORSIZE /*这两个东西好像也是多余的,备用吧,在次文章搜一下
就知道其它用到的地方也有定义*/
#define NAND_BLOCK_MASK 511         /*本flash一个block的大小-1*/
/* 页掩码 */
#define ADDR_COLUMN 1 /*意思是你所用的nandflash的Column地址占多少个字节*/
/* 一个字节的Column地址 */
#define ADDR_PAGE 3  /*意思是你所用的nandflash的(row)page地址占多少个字节*/
/* 3字节的页块地址!!!!!*/
#define ADDR_COLUMN_PAGE 4  /*意思是你所用的nandflash的column地址+page地址共占多少个字节*/
/* 总共4字节的页块地址!!!!! */
#define NAND_ChipID_UNKNOWN 0x00 
/* 未知芯片的ID号 */
#define NAND_MAX_FLOORS 1           /*怎样算一floor*/
#define NAND_MAX_CHIPS 1
/* Nand Flash命令层底层接口函数 
*/
#define rNFCONF (*(volatile unsigned int *)0x4e000000)
#define rNFCONT (*(volatile unsigned int *)0x4e000004)
#define rNFCMD (*(volatile unsigned char *)0x4e000008)
#define rNFADDR (*(volatile unsigned char *)0x4e00000c)
#define rNFDATA (*(volatile unsigned char *)0x4e000010)
#define rNFSTAT (*(volatile unsigned int *)0x4e000020)
#define rNFECC (*(volatile unsigned int *)0x4e00002c)
/*下面部分内容是修改的 */
/* Nand Flash命令层底层接口函数  */
/*
#define NAND_WAIT_READY(nand)      NF_WaitRB()
#define NAND_DISABLE_CE(nand)        NF_SetCE(NFCE_HIGH)
#define NAND_ENABLE_CE(nand)         NF_SetCE(NFCE_LOW)
#define WRITE_NAND_COMMAND(d, adr) NF_Cmd(d)
#define WRITE_NAND_COMMANDW(d, adr)      NF_CmdW(d)
#define WRITE_NAND_ADDRESS(d, adr)    NF_Addr(d)
#define WRITE_NAND(d, adr)                 NF_Write(d)
#define READ_NAND(adr)                         NF_Read()
*/
#define WRITE_NAND_ADDRESS(d, adr) {rNFADDR = d;}
#define WRITE_NAND(d, adr) {rNFDATA = d;}
#define READ_NAND(adr) (rNFDATA)
#define NAND_WAIT_READY(nand) {while(!(rNFSTAT&(1<<0)));}
#define WRITE_NAND_COMMAND(d, adr) {rNFCMD = d;}
#define WRITE_NAND_COMMANDW(d, adr)    NF_CmdW(d)
 
# if defined(CONFIG_S3C2440)
#define NAND_DISABLE_CE(nand) {rNFCONT |= (1<<1);}
#define NAND_ENABLE_CE(nand) {rNFCONT &= ~(1<<1);}
#endif
# if defined(CONFIG_S3C2410)
#define NAND_DISABLE_CE(nand) {rNFCONF |= (1<<11);}
#define NAND_ENABLE_CE(nand) {rNFCONF &= ~(1<<11);}
#endif

/* 允许Nand Flash写校验 打开下面宏定义*/
#define CONFIG_MTD_NAND_VERIFY_WRITE 1
......
#endif    /* __CONFIG_H */
8. 在/board/qljt/qljt2440/qljt2440.c文件的末尾添加对Nand Flash 的初始化函数(在后面Nand Flash的操作都要用到)
#if defined(CONFIG_CMD_NAND) /*大概在145行*/
typedef enum {
    NFCE_LOW,
    NFCE_HIGH
} NFCE_STATE;

static inline void NF_Conf(u16 conf)
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    nand->NFCONF = conf;
}


static inline void NF_Cmd(u8 cmd)
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    nand->NFCMD = cmd;
}

static inline void NF_CmdW(u8 cmd)
{
    NF_Cmd(cmd);
    udelay(1);
}

static inline void NF_Addr(u8 addr)
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    nand->NFADDR = addr;
}


static inline void NF_WaitRB(void)
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    while (!(nand->NFSTAT & (1<<0)));
}

static inline void NF_Write(u8 data)
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    nand->NFDATA = data;
}

static inline u8 NF_Read(void)
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    return(nand->NFDATA);
}

static inline u32 NF_Read_ECC(void)
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    return(nand->NFECC);
}

#if defined(CONFIG_S3C2440)
static inline void NF_Cont(u16 cont) 
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    nand->NFCONT = cont;
}

static inline void NF_SetCE(NFCE_STATE s)
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    switch (s) {
    case NFCE_LOW:
        nand->NFCONT &= ~(1<<1);
        break;
    case NFCE_HIGH:
        nand->NFCONT |= (1<<1);
        break;
    }
}

static inline void NF_Init_ECC(void)
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    nand->NFCONT |= (1<<4);
}

#else
static inline void NF_SetCE(NFCE_STATE s)
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    switch (s) {
    case NFCE_LOW:
        nand->NFCONF &= ~(1<<11);
        break;
    case NFCE_HIGH:
        nand->NFCONF |= (1<<11);
        break;
    }
}

static inline void NF_Init_ECC(void)
{
    S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
    nand->NFCONF |= (1<<12);
}
#endif /*对应#if defined(CONFIG_S3C2440)*/

static inline void NF_Init(void)
{
#if 0
#define TACLS 0
#define TWRPH0 3
#define TWRPH1 0
#else
#define TACLS 0
#define TWRPH0 4
#define TWRPH1 2
#endif

#if defined(CONFIG_S3C2440)
    NF_Conf((TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4));
    NF_Cont((0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(0<<6)|(0<<5)|(1<<4)|(0<<1)|(1<<0)); 
#else
    NF_Conf((1<<15)|(0<<14)|(0<<13)|(1<<12)|(1<<11)|(TACLS<<8)|(TWRPH0<<4)|(TWRPH1<<0));
    /*nand->NFCONF = (1<<15)|(1<<14)|(1<<13)|(1<<12)|(1<<11)|(TACLS<<8)|(TWRPH0<<4)|(TWRPH1<<0); */
    /* 1 1 1 1, 1 xxx, r xxx, r xxx */
    /* En 512B 4step ECCR nFCE=H tACLS tWRPH0 tWRPH1 */
#endif
    NF_Reset();
}

#endif
9. cpu\arm920t\s3c24x0\ Nand.c ,很多人说u-boot-1.3.4已经不支持CFG_NAND_LEGACY了,但其实还是支持的,定义了CFG_NAND_LEGACY后Nand.c要做如下修改:
#error "U-Boot legacy NAND support not available for S3C2410"
改成
// #error "U-Boot legacy NAND support not available for S3C2410"
/*===========================================================
到这里,编译是不能通过的,原因上一节中CONFIG_S3C2410这个宏定义被注释掉,下面要用CONFIG_S3C2440这个宏打开CONFIG_S3C2410所打开的内容===========================================================*/
 
10.  在S3C2440与s3c2410能够共用的文件中添加“CONFIG_S3C2440”,使得原来s3c2410的代码可以编译进来。
(1)/include/common.h文件的第492行:/*一些公用的常用函数,例如get_fclk()*/
#if defined(CONFIG_S3C2400) || defined(CONFIG_S3C2410) || defined(CONFIG_LH7A40X) || defined(CONFIG_S3C2440)
(2)/include/s3c24x0.h:文件的第85、95、99、110、148、404行:/*一些关于S3C2440寄存器的结构体*/
#if defined(CONFIG_S3C2410) || defined (CONFIG_S3C2440)
(3)/cpu/arm920t/s3c24x0/interrupts.c文件的第33行:/*主要把一些头文件包含进去*/
#if defined(CONFIG_S3C2400) || defined (CONFIG_S3C2410) || defined (CONFIG_TRAB) || defined (CONFIG_S3C2440)
第38行:
#elif defined(CONFIG_S3C2410) || defined (CONFIG_S3C2440)
(4)/cpu/arm920t/s3c24x0/serial.c文件的第22行:/*主要把一些头文件包含进去*/
#if defined(CONFIG_S3C2400) || defined (CONFIG_S3C2410) || defined (CONFIG_TRAB) || defined (CONFIG_S3C2440)
第26行:
#elif defined(CONFIG_S3C2410) || defined (CONFIG_S3C2440)
(5)/cpu/arm920t/s3c24x0/speed.c文件的第33行:
#if defined(CONFIG_S3C2400) || defined (CONFIG_S3C2410) || defined (CONFIG_TRAB) || defined (CONFIG_S3C2440)
第37行:
#elif defined(CONFIG_S3C2410) || defined (CONFIG_S3C2440)
顺便修改源代码,以匹配s3c2440:
static ulong get_PLLCLK(int pllreg)
{
   ......

    m = ((r & 0xFF000) >> 12) + 8;
    p = ((r & 0x003F0) >> 4) + 2;
    s = r & 0x3;
//qljt  /*这两个PLL的算法参见S3C2440datasheet的254页*/
#if defined(CONFIG_S3C2440)
   if (pllreg == MPLL)
    return((CONFIG_SYS_CLK_FREQ * m * 2) / (p << s)); /* CONFIG_SYS_CLK_FREQ 在qljt2440.h中定义*/
    else if (pllreg == UPLL)
#endif
//qljt
    return((CONFIG_SYS_CLK_FREQ * m) / (p << s));
}
......
/* return FCLK frequency */
ulong get_FCLK(void)
{
    return(get_PLLCLK(MPLL));
}
 
/* return HCLK frequency */
ulong get_HCLK(void)
{
    S3C24X0_CLOCK_POWER * const clk_power = S3C24X0_GetBase_CLOCK_POWER();
 /*看看s3c2410与s3c2440的datasheet就知道s3c2440的HCLK可选择的值多很多*/
  if (clk_power->CLKDIVN & 0x6)   
  {/*这里注意:编译的时候发现CLKDIVN ,这个将会在12节解决*/
       if ((clk_power->CLKDIVN & 0x6)==2)        return(get_FCLK()/2);
if ((clk_power->CLKDIVN & 0x6)==6)        return((clk_power->CAMDIVN & 0x100) ? get_FCLK()/6 : get_FCLK()/3);        /*注意这里的CAMDIVN还没有被定义,在/include/s3c24x0.h中定义 */
      if ((clk_power->CLKDIVN & 0x6)==4)        return((clk_power->CAMDIVN & 0x200) ? get_FCLK()/8 : get_FCLK()/4);        
        return(get_FCLK());
 } 
 else   {
        return(get_FCLK());
     }
//    return((clk_power->CLKDIVN & 0x2) ? get_FCLK()/2 : get_FCLK());
}
......
(6)/cpu/arm920t/s3c24x0/usb_ohci.c文件的第45行:
#elif defined(CONFIG_S3C2410) || defined(CONFIG_S3C2440)
(7)drivers/rtc/s3c24x0_rtc.c文件的第35行:
#elif defined(CONFIG_S3C2410) || defined(CONFIG_S3C2440) 
(8)在文件中添加“defined(CONFIG_qljt2440)”,使得原来SBC2410X开发板的代码可以编译进来,
/cpu/arm920t/s3c24x0/interrupts.c文件的第181行: 
   #elif defined(CONFIG_SBC2410X) || \
      defined(CONFIG_SMDK2410) || \
      defined(CONFIG_VCMA9) || defined(CONFIG_qljt2440)
    tbclk = CFG_HZ;   /*对于CFG_HZ 的值,结合uboot的说明和s3c2440的datasheet就比较容易理解*/
#else
(9)/cpu/arm920t/s3c24x0/usb.c文件的第31行: 
#elif defined(CONFIG_S3C2410) || defined (CONFIG_S3C2440)
(10)/cpu/arm920t/s3c24x0/i2c.c文件的第35行: 
#elif defined(CONFIG_S3C2410) || defined (CONFIG_S3C2440)
第66、85、142、150、174行:
将“#ifdef CONFIG_S3C2410”改为 
#if defined(CONFIG_S3C2410) || defined (CONFIG_S3C2440)
(11)drivers/usb/usb_ohci.c文件的第68行附近:
#if defined(CONFIG_ARM920T) || \
    defined(CONFIG_S3C2400) || \
    defined(CONFIG_S3C2410) || \
    defined(CONFIG_S3C2440) || \
    defined(CONFIG_440EP) || \
    defined(CONFIG_PCI_OHCI) || \
    defined(CONFIG_MPC5200)
11. 在/include/s3c24x0.h中加入2440 的NAND FLASH 寄存器定义和CAMDIVN定义:
typedef struct {
         S3C24X0_REG32   LOCKTIME;
         S3C24X0_REG32   MPLLCON;
         S3C24X0_REG32   UPLLCON;
         S3C24X0_REG32   CLKCON;
         S3C24X0_REG32   CLKSLOW;
         S3C24X0_REG32   CLKDIVN;
         S3C24X0_REG32   CAMDIVN;
} S3C24X0_CLOCK_POWER;
......
#if defined(CONFIG_S3C2410)  // 2440 的NAND FLASH 寄存器
typedef struct {
         S3C24X0_REG32   NFCONF;
         S3C24X0_REG32   NFCMD;
         S3C24X0_REG32   NFADDR;
         S3C24X0_REG32   NFDATA;
         S3C24X0_REG32   NFSTAT;
         S3C24X0_REG32   NFECC;
} S3C2410_NAND;
#endif
#if defined (CONFIG_S3C2440)
typedef struct {
         S3C24X0_REG32   NFCONF;
         S3C24X0_REG32   NFCONT;
         S3C24X0_REG32   NFCMD;
         S3C24X0_REG32   NFADDR;
         S3C24X0_REG32   NFDATA;
         S3C24X0_REG32   NFMECC0;
         S3C24X0_REG32   NFMECC1;
         S3C24X0_REG32   NFSECC;
         S3C24X0_REG32   NFSTAT;
         S3C24X0_REG32   NFESTAT0;
         S3C24X0_REG32   NFESTAT1;
         S3C24X0_REG32   NFECC;
} S3C2410_NAND;
#endif
12. 修改/lib_arm中的board.c。  
......
#include
#include
#include
#include
#include
#include
#include  
 
......
13. 修改common/env_nand.c 
......
#ifdef CONFIG_INFERNO
#error CONFIG_INFERNO not supported yet
#endif

int nand_legacy_rw (struct nand_chip* nand, int cmd,
        size_t start, size_t len,
        size_t * retlen, u_char * buf);
extern struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE];
extern int nand_legacy_erase(struct nand_chip *nand, size_t ofs, size_t len, int clean);

/* info for NAND chips, defined in drivers/nand/nand.c */
nand_info_t nand_info[CFG_MAX_NAND_DEVICE];

......

#else /* ! CFG_ENV_OFFSET_REDUND */
int saveenv(void)
{
    size_t total;
    int ret = 0;
    nand_erase_options_t nand_erase_options;

    nand_erase_options.length = CFG_ENV_RANGE;
    nand_erase_options.quiet = 0;
    nand_erase_options.jffs2 = 0;
    nand_erase_options.scrub = 0;
    nand_erase_options.offset = CFG_ENV_OFFSET;

    if (CFG_ENV_RANGE < CFG_ENV_SIZE)
        return 1;
    puts ("Erasing Nand...\n");
/*在248行附近*/
//    if (nand_erase_opts(&nand_info[0], &nand_erase_options))
  if (nand_legacy_erase(nand_dev_desc + 0, CFG_ENV_OFFSET, CFG_ENV_SIZE, 0))           
    return 1;
    puts ("Writing to Nand... ");
    total = CFG_ENV_SIZE;
/*在254行附近*/
//    if (writeenv(CFG_ENV_OFFSET, (u_char *) env_ptr)) {
//        puts("FAILED!\n");
//        return 1;
//    }
ret = nand_legacy_rw(nand_dev_desc + 0,0x00 | 0x02, CFG_ENV_OFFSET, CFG_ENV_SIZE,&total, (u_char*)env_ptr);
 if (ret || total != CFG_ENV_SIZE)
        return 1;
    puts ("done\n");
    return ret;
}

#else /* ! CFG_ENV_OFFSET_REDUND */
.......
/*
 * The legacy NAND code saved the environment in the first NAND device i.e.,
 * nand_dev_desc + 0. This is also the behaviour using the new NAND code.
 */
void env_relocate_spec (void)
{
#if !defined(ENV_IS_EMBEDDED)
    size_t total;
    int ret;

    total = CFG_ENV_SIZE;
/*在360行附近*/
//    ret = readenv(CFG_ENV_OFFSET, (u_char *) env_ptr);
     ret = nand_legacy_rw(nand_dev_desc + 0, 0x01 | 0x02, CFG_ENV_OFFSET,CFG_ENV_SIZE, &total, (u_char*)env_ptr);/*edited by yaoyi 20090314,1.3.4是先进入到readenv,而非直接调用nand_legacy_rw。 因此干脆就不用到readenv了,直接注释掉,添加以上代码 */
    if (ret || total != CFG_ENV_SIZE)
        return use_default();

    if (crc32(0, env_ptr->data, ENV_SIZE) != env_ptr->crc)
        return use_default();
#endif /* ! ENV_IS_EMBEDDED */
}
/*
u-boot运行至第二阶段进入start_armboot()函数。其中nand_init()函数是对nand flash的最初初始化函数。Nand_init()函数在两个文件中实现。其调用与CFG_NAND_LEGACY宏有关,如果没有定义这个宏,系统调用 drivers/nand/nand.c中的nand_init();否则调用自己在board/qljt/qljt2440/qljt2440.c中的nand_init()函数。这里我选择第二种方式。*/
14. 修改include/nand.h

.......
//#ifndef CFG_NAND_LEGACY 
#include  
#include  
#include  
.......
//#endif /* !CFG_NAND_LEGACY */
/*===========================================================
到这里,应该是可以编译通过的,否则就是编辑的时候出现了错误
===========================================================*/
9、在 include/linux/mtd/nand_ids.h的结构体nand_flash_ids加入 /*至于这个结构体的值怎么得来,有待研究*/
static struct nand_flash_dev nand_flash_ids[] = {
....../*结构体nand_flash_dev 在doc2000.h中定义*/
/*厂家 型号,生产商编号,本模块的编号,总共容纳地址的位数,存储页字节数是否为256  ,地址需要多少字节数减一(行列地址总共)  ,擦除1个block的大小,是否为16位总线 */
    {"Samsung KM29N16000",NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000, 0}, 
    {"Samsung K9F1208U0B",  NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0},
    {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000, 0},
......
};
/*下面说说上面结构体的 8个参数是怎么得出来的,以便日后再次移植的时候会更换 nand flash*/
/*
1.“厂家  型号”:这个从 nand flashdatasheet就可以直接找到了吧。
2. 生产商的编号:也就是 datasheet里面的 Maker code,它也同时被存放在 nand flash里面的 ID(nand flash应该有一个读 ID命令的 )信息里面)。
3. 本模块的编号:也就是 datasheet里面的 device code,跟 Maker code一样它也被放到 ID信息里面。
4. 总共容纳的地址位数:也就是有效的地址位数。针对于本 flash(K9F1208U0M)可以参考它的 datasheet7页。
5. 一页所存储的字节数是否为 256个:针对于本 flash(K9F1208U0M)可以参考它的 datasheet7页。
6. 地址需要多少字节数减一 (行列地址总共 ):举个例子可能更容易明白,第 4点中可以知道本 flash(K9F1208U0M)26位,而对本 flash地址的写入每次只能写 8位,所以至少要写 4次才能把 26位地址写入本 flash4次的写入针对于编程来说就是 [0:3],所以本 falsh相对于该结构体的该变量的值是 3.
7. 擦除 1block的大小:简单来说就是 1block的大小,本 flash 1block=32 pages1 page=512 bytes,所以  1 block=512x32=16 k-bytes,也就是 0x4000
8. 是否为 16位总线:本 flash地址和数据总线共用,都是 8位的,所以上面值为 0
*/
15. 修改/lib_arm中的board.c。添加几个debug信息  (这一步可以不用修改)
......
#include
#include
#include
#include
#include
#include
 
......
 
static int display_banner (void)
{       
         S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
         gpio->GPFDAT = 0x8f;   //qljtninja
// 在串口初始化和console 初始化完成,串口输出信息之前,LED1 LED2 LED3 会亮起!
    printf ("\n\n%s\n\n", version_string);
    debug ("U-Boot code: %08lX -> %08lX   BSS: -> %08lX\n",
            _armboot_start, _bss_start, _bss_end);
    printf ("U-Boot code: %08lX -> %08lX   BSS: -> %08lX\n",     //qljt
         _armboot_start, _bss_start, _bss_end);        //qljt
#ifdef CONFIG_MODEM_SUPPORT
    debug ("Modem Support enabled\n");
#endif
#ifdef CONFIG_USE_IRQ
    debug ("IRQ Stack: %08lx\n", IRQ_STACK_START);
    debug ("FIQ Stack: %08lx\n", FIQ_STACK_START);
#endif

     return (0);
}
 
......
void start_armboot (void)
{
         init_fnc_t **init_fnc_ptr;
         char *s;
#ifndef CFG_NO_FLASH
         ulong size;
#endif
#if defined(CONFIG_VFD) || defined(CONFIG_LCD)
         unsigned long addr;
#endif
         S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();
......
         gpio->GPFDAT = 0x7f;  //qljtninja
// 在进入命令提示符之前,四个LED 会同时亮起!
         /* main_loop() can return to retry autoboot, if so just run it again. */
         for (;;) {
                   main_loop ();
         }
 
         /* NOTREACHED - no way out of command loop except booting */
}
/*===========================================================
到这里,应该是可以编译通过的,否则就是编辑的时候出现了错误
===========================================================*/
 
16. 裁减flash的支持 (这一步也可以不执行)
(1)在board/qljt/qljt2440/flash.c的头部加上:#if 0,尾部加上:#endif
(2)在include/configs/qq2440.h加上:
#undef CONFIG_CMD_FLASH
#undef CONFIG_CMD_IMLS
….
#define CFG_NO_FLASH  1
(3)在common/cmd_bootm.c的”#include”语句后加上
#ifdef CONFIG_CMD_IMLS
#undef CONFIG_CMD_IMLS
#endif
 
附录:
一.
U-boot的命令默认配置存放在/include/config_cmd_default.h里,可以修改该文件或者在qq2440.h里添加#undef里裁减不需要的内容
二.
1.u-boot-1.3.2(不含 u-boot-1.3.2)nand_init函数的调用关系,它的调用是被“ CONFIG_COMMANDS&
CFG_CMD_NAND”和“ CFG_NAND_LEGACY”控制的, 1:表示该值为真, 0:表示该值为假
CONFIG_COMMANDS&
CFG_CMD_NAND
CFG_NAND_LEGACY
/drivers/mtd/nand/nand.c中的
nand_init()函数
/board/qljt/qljt2440/qljt2440.c中的 nand_init()函数
0
0
0
0
0
1
0
0
1
0
1
1
1
1
0
1
 
 
2.u-boot-1.3.2(u-boot-1.3.2)nand_init函数的调用关系,它的调用是被“ CONFIG_CMD_NAND”和“ CFG_NAND_LEGACY”控制的, 1:表示该值为真, 0:表示该值为假
CONFIG_CMD_NAND
CFG_NAND_LEGACY
/drivers/mtd/nand/nand.c中的
nand_init()函数
/board/qljt/qljt2440/qljt2440.c中的 nand_init()函数
0
0
0
0
0
1
0
0
1
0
1
1
1
1
0
1

你可能感兴趣的:(uboot,启动,uboot)