负频率的解释

首先明确,负频率有其明确的物理意义。和速度类似,逆顺时针旋转则拥有正角速度,顺时针旋转则拥有负角速度。

对于一个实数信号而言,对其进行傅里叶变换。其负频率和正频率是共轭的。

傅里叶变换,可以将一个信号分解为多个exp(jwt)之和。如果我们把它放在复平面和时间组成的三维空间中。

我们举最简单的例子,cos(w0t),他的傅里叶变换是pi*(delta(w-w0)+delta(w+w0))

负频率的解释_第1张图片

可以看出,左面是逆时针旋转,所以频率为正,右面是顺时针旋转,所以频率为负。而我们对一个实信号的合成,实际上是将上述信号在实轴和时间轴的投影,按照时间为自变量,实轴数据为函数的叠加。所以,上两幅图对实轴的投影如下

负频率的解释_第2张图片

大家发现,两幅图波形一样,只不过是峰值减半了。显然叠加就是原信号。

那虚轴部分呢

负频率的解释_第3张图片

大家注意到,波形正好相反,所以叠加后就会消失,只剩下是信号。

所以,无论是正频率还是负频率,都可以通过逆变换产生对应的实信号和虚信号,只不过对于实信号而言,虚信号叠加就消失了。




你可能感兴趣的:(声学常识和数学)