版本:spak2.3
相关源码:org.apache.spark.SparkContext
在创建spark任务时候,往往会指定一些依赖文件,通常我们可以在spark-submit脚本使用--files /path/to/file指定来实现。
但是公司产品的架构是通过livy来调spark任务,livy的实现其实是对spark-submit的一个包装,所以如何指定依赖文件归根到底还是在spark这边。既然不能通过命令行--files指定,那在编程中怎么指定?任务在各个节点上运行时又是如何获取到这些文件的呢?
根据spark-submit的参数传递源码分析得知,spark-submit --files其实是由参数"spark.files"接收,所以在代码中可以通过sparkConf设置该参数。
比如:
SparkConf conf = new SparkConf(); conf.set("spark.files","/path/to/file"); //如果文件是放在hdfs上,可以通过conf.set("spark.files","hdfs:/path/to/file")指定,注意这里只需要加上个hdfs的schema即可,不需要ip port
spark官网关于该参数的解释:
spark.files Comma-separated list of files to be placed in the working directory of each executor. Globs are allowed.
具体怎么读取用户指定的文件相关源码在SparkContext.scala中,如下(--jars指定依赖jar包同理):
def jars: Seq[String] = _jars def files: Seq[String] = _files ... _jars = Utils.getUserJars(_conf) _files = _conf.getOption("spark.files").map(_.split(",")).map(_.filter(_.nonEmpty)) .toSeq.flatten ... // Add each JAR given through the constructor if (jars != null) { jars.foreach(addJar) } if (files != null) { files.foreach(addFile) }
addFile实现如下:
/** * Add a file to be downloaded with this Spark job on every node. * * If a file is added during execution, it will not be available until the next TaskSet starts. * * @param path can be either a local file, a file in HDFS (or other Hadoop-supported * filesystems), or an HTTP, HTTPS or FTP URI. To access the file in Spark jobs, * use `SparkFiles.get(fileName)` to find its download location. * @param recursive if true, a directory can be given in `path`. Currently directories are * only supported for Hadoop-supported filesystems. * 1. 文件会下载到每一个节点 * 2. 如果在运行中增加文件,那么只有到下一批taskset开始执行时有效 * 3. 文件的位置可以是本地文件,HDFS文件或者其他hadoop支持的文件系统上,HTTP,HTTPS或者FTP URI也可以。在spark jobs中可以通过 * SparkFiles.get(fileName)访问此文件 * 4. 如果要递归获取文件,那么可以给定一个目录,但是这种方式只对Hadoop-supported filesystems有效。 */ def addFile(path: String, recursive: Boolean): Unit = { val uri = new Path(path).toUri val schemeCorrectedPath = uri.getScheme match { //如果路径中不指定schema,也就是null. //在命令行指定--files 时候,--files /home/kong/log4j.properties等同于--files local:/home/kong/log4j.properties case null | "local" => new File(path).getCanonicalFile.toURI.toString case _ => path } val hadoopPath = new Path(schemeCorrectedPath) val scheme = new URI(schemeCorrectedPath).getScheme if (!Array("http", "https", "ftp").contains(scheme)) { val fs = hadoopPath.getFileSystem(hadoopConfiguration) val isDir = fs.getFileStatus(hadoopPath).isDirectory if (!isLocal && scheme == "file" && isDir) { throw new SparkException(s"addFile does not support local directories when not running " + "local mode.") } if (!recursive && isDir) { throw new SparkException(s"Added file $hadoopPath is a directory and recursive is not " + "turned on.") } } else { // SPARK-17650: Make sure this is a valid URL before adding it to the list of dependencies Utils.validateURL(uri) } val key = if (!isLocal && scheme == "file") { env.rpcEnv.fileServer.addFile(new File(uri.getPath)) } else { schemeCorrectedPath } val timestamp = System.currentTimeMillis if (addedFiles.putIfAbsent(key, timestamp).isEmpty) { logInfo(s"Added file $path at $key with timestamp $timestamp") // Fetch the file locally so that closures which are run on the driver can still use the // SparkFiles API to access files. Utils.fetchFile(uri.toString, new File(SparkFiles.getRootDirectory()), conf, env.securityManager, hadoopConfiguration, timestamp, useCache = false) postEnvironmentUpdate() } }
在addJar和addFile方法的最后都调用了postEnvironmentUpdate方法,而且在SparkContext初始化过程的
最后也会调用postEnvironmentUpdate,代码如下:
/** Post the environment update event once the task scheduler is ready */ private def postEnvironmentUpdate() { if (taskScheduler != null) { val schedulingMode = getSchedulingMode.toString val addedJarPaths = addedJars.keys.toSeq val addedFilePaths = addedFiles.keys.toSeq // 通过调用SparkEnv的方法environmentDetails将环境的JVM参数、Spark 属性、系统属性、classPath等信息设置为环境明细信息。 val environmentDetails = SparkEnv.environmentDetails(conf, schedulingMode, addedJarPaths, addedFilePaths) // 生成SparkListenerEnvironmentUpdate事件,并投递到事件总线 val environmentUpdate = SparkListenerEnvironmentUpdate(environmentDetails) listenerBus.post(environmentUpdate) } }
environmentDetails方法:
/** * Return a map representation of jvm information, Spark properties, system properties, and * class paths. Map keys define the category, and map values represent the corresponding * attributes as a sequence of KV pairs. This is used mainly for SparkListenerEnvironmentUpdate. */ private[spark] def environmentDetails( conf: SparkConf, schedulingMode: String, addedJars: Seq[String], addedFiles: Seq[String]): Map[String, Seq[(String, String)]] = { import Properties._ val jvmInformation = Seq( ("Java Version", s"$javaVersion ($javaVendor)"), ("Java Home", javaHome), ("Scala Version", versionString) ).sorted // Spark properties // This includes the scheduling mode whether or not it is configured (used by SparkUI) val schedulerMode = if (!conf.contains("spark.scheduler.mode")) { Seq(("spark.scheduler.mode", schedulingMode)) } else { Seq.empty[(String, String)] } val sparkProperties = (conf.getAll ++ schedulerMode).sorted // System properties that are not java classpaths val systemProperties = Utils.getSystemProperties.toSeq val otherProperties = systemProperties.filter { case (k, _) => k != "java.class.path" && !k.startsWith("spark.") }.sorted // Class paths including all added jars and files val classPathEntries = javaClassPath .split(File.pathSeparator) .filterNot(_.isEmpty) .map((_, "System Classpath")) val addedJarsAndFiles = (addedJars ++ addedFiles).map((_, "Added By User")) val classPaths = (addedJarsAndFiles ++ classPathEntries).sorted Map[String, Seq[(String, String)]]( "JVM Information" -> jvmInformation, "Spark Properties" -> sparkProperties, "System Properties" -> otherProperties, "Classpath Entries" -> classPaths) }