- Docker中GPU的使用指南
俞兆鹏
云原生实践docker容器运维
在当今的计算领域,GPU(图形处理单元)已经成为了加速各种计算密集型任务的关键硬件,特别是在深度学习、科学模拟和高性能计算等领域。Docker作为流行的容器化平台,允许开发者将应用程序及其依赖打包成一个可移植的容器,在不同的环境中运行。当需要在Docker容器中利用GPU的计算能力时,我们需要进行一些特定的配置和设置。本文将详细介绍如何在Docker中使用GPU,从环境准备到实际应用,帮助你充分利
- 大模型最新面试题系列:训练篇之模型监控与调试
人肉推土机
大模型最新面试题集锦大全面试人工智能pytorchAI编程语言模型
1.训练过程中需要监控哪些关键指标?如何设置报警阈值?关键指标损失函数值:包括训练损失和验证损失,反映模型在训练和验证数据上的拟合程度。准确率:分类任务中的预测正确样本占总样本的比例,评估模型的预测能力。召回率和F1值:在二分类或多分类任务中,用于更全面地评估模型性能,特别是在正负样本不均衡的情况下。学习率:监控学习率的变化,确保其处于合适的范围,避免学习率过大导致模型不稳定或过小导致训练收敛过慢
- 集团公司数字化转型及数据资源中心建设方案:蓝图规划、总体流程、数据模型设计、数据区定位与数据模型设计流程、基础区数据模型设计、用户标签数据模型设计、数据开发体系框架、数据统一调度管理、ETL调度平台
数智化领地
数字化转型数据治理主数据数据仓库etl数据仓库
集团公司数字化转型及数据资源中心建设方案集团公司数字化转型及数据资源中心建设方案蓝图规划数字化转型战略目标数据资源中心定位与功能整体架构与技术选型实施路径与时间表总体流程业务流程梳理与优化数据流程规划与设计技术实施步骤与要点风险评估与应对措施数据模型设计概念数据模型构建逻辑数据模型转换物理数据模型实现模型验证与优化方法数据区定位与数据模型设计流程数据区划分原则及策略各类数据区功能定义数据模型设计流
- 三维模型点云化工具V1.0使用介绍:将三维模型进行点云化生成
是刃小木啦~
pythonpyqt工业软件软件工程
三维软件绘制的三维模型导入之后,可以生成点云,用于替代实际的激光扫描过程,当然,主要是用于点云算法的测试和验证,没法真正模拟扫描的效果,因为太过于理想化了。功能介绍将三维软件绘制的三维模型变成点云,并且支持不同的点云密度。支持添加不同的噪声,高斯噪声比较柔和,随机噪声比较明显。功能视频介绍三维模型点云化工具V1.0使用介绍:将三维模型进行点云化生成,支持不同的分辨率,支持添加噪声下载地址三维模型点
- OpenCV 100道面试题及参考答案(7万字长文)
大模型大数据攻城狮
大厂面试大厂面经android面试计算机视觉opencv实时互动webrtc
OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了丰富的函数和工具,用于处理图像和视频。OpenCV最初由英特尔公司开发,现在由一个开源社区维护和发展。主要功能和用途OpenCV的主要功能包括图像和视频处理、特征提取、目标检测、人脸识别、物体跟踪等。它可以用于各种领域,如机器人技术、医学影像、安全监控、自动驾驶等。在图像
- 【学习笔记5】Linux下cuda、cudnn、pytorch版本对应关系
longii11
linuxpytorch运维
一、cuda和cudnnNVIDIACUDAToolkit(CUDA)为创建高性能GPU加速应用程序提供了一个开发环境。借助CUDA工具包,您可以在GPU加速的嵌入式系统、桌面工作站、企业数据中心、基于云的平台和HPC超级计算机上开发、优化和部署您的应用程序。该工具包包括GPU加速库、调试和优化工具、C/C++编译器以及用于部署应用程序的运行时库。全球的深度学习研究人员和框架开发人员都依赖cuDN
- 【无标题】四色定理拓扑证明的数学强化与物理深化框架
2301_81062744
拓扑学
###**四色定理拓扑证明的数学强化与物理深化框架**---####**一、拓扑收缩的数学严谨性补全**#####**1.1零点插入的平面性保持证明**-**Kuratowski定理应用**:验证插入零点后的图\(G'\)不含\(K_5\)或\(K_{3,3}\)子图。-**引理**:每次插入零点仅增加2度顶点,不改变图的平面类。-**证明**:设原图\(G\)为平面图,插入零点\(p\)将边\(
- ——四色定理的解析与证明(完整版)
2301_81062744
拓扑学
——四色定理的解析与证明(完整版)###**引言**四色定理自1852年诞生以来,始终是图论与拓扑学领域的核心难题。其简洁的表述——“任何平面地图仅需四种颜色即可实现邻接区域异色”——与证明过程的复杂性形成鲜明对比。1976年,Appel与Haken通过计算机穷举约1500种不可约构形,首次给出确定性证明,却因依赖机器验证引发了数学哲学层面的长期争议。此后,数学家们不断寻求更直观、更具构造性的证明
- 数据结构——六度空间理论验证
FineFINE01
数据结构数据结构图论
一、实验项目要求1.输入格式:多组数据输入,每组数据m+1行,第一行有两个数字,n和m,代表着n个人和m组朋友的关系,n个人的编号为1到n,第二行到第m+1行每行包括两个数字a和b,代表着两个人互相认识。输出格式:对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:百分比%”。二、理论分析六度空间理论的数学模型属于图结构,我们把六
- LLM辅助编程:代码自动生成与优化
AI智能涌现深度研究
计算机软件编程原理与应用实践DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
LLM,代码生成,代码优化,编程辅助,AI编程,自然语言处理,深度学习1.背景介绍随着软件开发的日益复杂化,程序员面临着越来越高的开发压力和效率要求。传统的编程方式依赖于手动编写代码,这不仅耗时费力,而且容易出现错误。近年来,随着深度学习技术的快速发展,基于大型语言模型(LLM)的代码生成和优化技术逐渐成为软件开发领域的新兴热点。LLM是一种强大的人工智能模型,能够理解和生成人类语言。通过训练大量
- 国内开源深度学习框架
we19a0sen
深度学习人工智能
目录一、国内开源深度学习框架1、PaddlePaddle(百度飞浆)2、MindSpore(华为昇思)3、MegEngine(旷视天元)4、OneFlow(一流科技)5、Jittor(清华计图)二、快速入手1、PaddlePaddle(百度飞浆)2、MindSpore(华为昇思)3、MegEngine(旷视天元)4、OneFlow(一流科技)5、Jittor(清华计图)三、基础教程1、Paddle
- Nodemailer使用教程:在Node.js中发送电子邮件
m0_74823683
面试学习路线阿里巴巴node.jslinux运维
目录1.简介2.安装3.基本配置3.1创建传输器3.2配置说明4.发送邮件4.1基本发送示例4.2发送验证码示例5.?常见问题解决5.1“Greetingneverreceived”?错误5.2?安全建议SMTP与邮件加密协议详解?1.SMTP简介1.1基本特点2.加密协议对比2.1SSL/TLS(端口465)?2.2?STARTTLS(端口587)3.端口使用建议3.1常用端口对比3.2选择建议
- MySQL 8密码策略
数据和云
数据库pythonlinuxmysqljava
MySQL8提供了较多的密码管理功能和策略,包括密码过期时间设置,密码重用限制,密码验证,双密码,密码强度评估和密码失败跟踪等。DBA使用提供的这些功能和策略对MySQL用户的密码进行管理和配置,进一步完善数据库的安全保障。1密码过期策略MySQL提供参数配置设置全局密码过期时间,也可以创建用户时指定密码过期时间,也可以手动设置某一用户密码过期;系统从用户最近一次密码更新时间计时,当超过其允许的生
- Gin框架深度解剖:中间件的实现原理
魔法小匠
Go语言深度探索与实战golangGingin框架解析gin框架原理gin框架源码中间件实现原理
引言Gin是一个用Go语言编写的高性能Web框架,以其简洁的API和卓越的性能著称。在Gin中,中间件(Middleware)是一个非常重要的概念,它允许我们在请求处理的前后执行一些通用的逻辑,比如日志记录、身份验证、错误处理等。本文将深入探讨Gin框架中中间件的实现原理,帮助读者更好地理解和使用Gin框架。什么是中间件?中间件是一种在HTTP请求到达目标处理函数之前或之后执行的函数。它可以用来处
- 洛谷每日1题-------Day14__P1304 哥德巴赫猜想
__雨夜星辰__
洛谷每日1题算法学习笔记c++c语言
题目描述输入一个偶数N,验证4∼N所有偶数是否符合哥德巴赫猜想:任一大于2的偶数都可写成两个质数之和。如果一个数不止一种分法,则输出第一个加数相比其他分法最小的方案。例如10,10=3+7=5+5,则10=5+5是错误答案。输入格式第一行输入一个正偶数N输出格式输出2N−2行。对于第i行:首先先输出正偶数2i+2,然后输出等号,再输出加和为2i+2且第一个加数最小的两个质数,以加号隔开。输入输出样
- 【免费收藏】清华大学DeepSeek使用手册合集 600页完整版
周师姐
AI写作学习人工智能pdf
DeepSeek资料链接:https://pan.quark.cn/s/c927326f70c5在人工智能席卷全球的当下,DeepSeek作为前沿深度学习技术,正推动着全面AI时代的到来。今日,特别为大家推荐《DeepSeek:从入门到精通》,本书由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队精心编写。它深度解析DeepSeek的技术核心,详尽阐释其应用场景与操作方法,尤
- YOLOv12改进之A2(区域注意力)
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法
注意力回顾注意力机制作为深度学习领域的核心技术,已广泛应用于自然语言处理和计算机视觉等多个领域。在YOLOv12改进之A2中,注意力机制扮演着关键角色。已有研究成果包括:Transformer架构:引入了自注意力机制,有效捕捉输入序列中的长距离依赖关系。CBAM模块:提出了通道和空间注意力的结合,显著提升了图像分类和目标检测的性能。SENet:引入了通道注意力机制,通过自适应学习特征通道的重要性,
- 重磅发现!DeepSeek R1方法成功迁移到视觉领域,多模态AI迎来新突破!
zhangjiaofa
DeepSeekR1&AI人工智能大模型人工智能DeepSeekR1多模态
一、引言在当今人工智能飞速发展的时代,多模态AI技术正逐渐成为研究与应用的焦点。近日,一项令人瞩目的成果引发了广泛关注——VLM-R1开源项目成功将DeepSeek的R1方法从纯文本领域迁移至视觉语言领域,为多模态AI的发展开辟了新的道路,极大地拓展了多模态领域的想象空间。本文将深入探讨这一创新性成果,从其灵感来源、验证结果、实际案例、带来的新思路以及开源资源等多个方面进行剖析,带您全面了解这一前
- MySQL时间溢出原理、实战影响与全面解决方案
mysql后端数据库服务器
一、问题背景与现象复现操作场景:本文将手把手带您了解mysql时间溢出原理、实战影响与全面解决方案,所有代码均通过dblensformysql数据库工具验证,推荐使用该工具进行可视化数据库管理和开发。在MySQL5.7环境中,若通过命令date-s"2038-04-0100:00:00"将系统时间设置为2038年4月1日,观察MySQL的行为。现象总结:timestamp字段溢出:写入2038年后
- Grok 3能否打破大模型的魔咒?
TGITCIC
AI-大模型的落地之道grokgrok3大模型小模型scalinglaw开源大模型
新模型旧魔咒Grok3的问世,仿佛是科技界的一声惊雷。面对老掉牙的大模型法则,大家不禁要问:这到底意味着什么?以前,一提深度学习就能引出一场血雨腥风,现如今却有人说“没钱也能玩”。这风浪可真是一波未平一波又起。也许这就是科技的魅力:一统江湖的法则瞬间瓦解。缩小与提升大模型不再是唯一的解决方案,大家发现,原来小模型也可以撬动市场。不过,面对如何提升模型的智商,各路英雄却依然不得不面对两个选择:大力度
- 深度学习_第二轮
Humingway
深度学习深度学习人工智能
损失函数对偏置和权重求导,x、y作为常量确实,当进行模型训练时,(x)和(y)分别代表输入特征和对应的输出值,它们以数据点对的形式存在,一个数据集中通常包含多对这样的数据。每一对((x_i),(y_i))代表了数据集中的一个样本。在计算损失函数的梯度(即关于权重的偏导数)时,需要考虑整个数据集中的所有样本。对于每个样本((x_i),(y_i)),我们计算其对损失函数的贡献,并通过求和或平均这些贡献
- 对深度学习中的基本概念—梯度的理解
Humingway
深度学习深度学习人工智能
本文讨论一下对“梯度”的理解。“梯度”是深度学习中基本又非常核心的概念,没有它就没有人工智能的今天。然而,即使抛开令人眼花缭乱的术语(比如sgd、ada、moment、adam)不谈,即使最简单的“梯度”本身,也值得讨论一下。1.提出问题该如何理解梯度?让我们结合具体的例子来体会一下。2.定义例子首先,我们定义一个简单的例子,来模拟一下深度学习的学习过程。已知:有一个正确的数据对(或者叫样本),(
- 《机器学习实战:从数据清洗到云端部署的可视化进阶指南(三)》
庸俗今天不摸鱼
机器学习人工智能python
▍前言:阶段核心突破当前已完成模型开发与优化升级核心任务,成功将理论模型转化为工业级解决方案。本阶段基于前期标准化数据,实现从基础模型构建到高性能算法迭代的跨越式发展。▍章节回顾:攻坚与优化成果3.模型开发阶段算法实现:逻辑回归:搭建分类基线(LogisticRegression,准确率基准)支持向量机:对比线性核与RBF核性能差异(F1-score提升12%)K近邻:动态优化邻居数(k=5时验证
- 缺陷生命周期管理与优先级划分实战
测试渣
功能测试
在当今竞争激烈的市场环境中,软件产品的质量对于企业的成功至关重要。缺陷管理作为软件质量保证的关键环节,直接影响着产品的稳定性、可靠性和用户体验。有效的缺陷生命周期管理和优先级划分能够帮助企业及时发现、解决缺陷,提高软件质量,降低维护成本,增强用户满意度。本文将结合实际案例,深入探讨缺陷生命周期管理与优先级划分的实战经验。一、缺陷生命周期管理概述缺陷生命周期是指一个缺陷从发现、报告、分配、修复到验证
- 乘方运算符(**)的优先级是否高于乘法运算符?执行计算来检查你的猜测。
lisw05
pythonpython
李升伟整理是的,乘方运算符(**)的优先级高于乘法运算符(*)。在Python中,运算符的优先级规则遵循数学中的惯例,乘方运算会先于乘法和除法执行。我们可以通过以下计算验证这一点:示例1:3*2**3如果**优先级更高:先计算2**3=8,再计算3*8=24。如果*优先级更高:先计算3*2=6,再计算6**3=216。实际执行结果:>>>3*2**324验证表明,**的优先级更高。示例2:2**3
- 安装Python后,还要安装其交互式开发环境IDLE吗?
lisw05
pythonpython开发语言
李升伟整理1.IDLE是Python自带的工具默认安装:在大多数Python安装包(尤其是Windows和MacOS版本)中,IDLE会随Python一起自动安装,无需额外操作。安装完成后,你可以在开始菜单或应用列表中找到它。验证是否已安装:打开终端(或命令提示符),输入idle或idle3(Python3版本),如果弹出IDLE界面,说明已安装。2.是否需要使用IDLE?适合使用IDLE的情况:
- 《基于WebGPU的下一代科学可视化——告别WebGL性能桎梏》
Eqwaak00
matplotlibwebgl微服务架构云原生分布式
引言:科学可视化的算力革命当WebGL在2011年首次亮相时,它开启了浏览器端3D渲染的新纪元。然而面对当今十亿级粒子模拟、实时物理仿真和深度学习可视化需求,WebGL的架构瓶颈日益凸显。WebGPU作为下一代Web图形标准,通过显存直存、多线程渲染和计算着色器三大革新,将科学可视化性能提升至10倍以上。本文将深入解析如何利用WebGPU突破大规模数据渲染的极限。一、WebGPU核心架构解析1.1
- # LeetCode 3270. 求出数字答案 —— Python 解题思路与实现
迪小莫学AI
每日算法leetcodepython算法
LeetCode3270.求出数字答案——Python解题思路与实现在本篇博客中,我们将详细解析LeetCode上的第3270题——求出数字答案。我们将从问题描述出发,逐步分析解题思路,最后提供Python代码实现,并通过示例验证其正确性。问题描述给你三个正整数num1,num2和num3。数字num1,num2和num3的数字答案key是一个四位数,定义如下:前导补零:如果有数字少于四位数,给它
- 鸿蒙全栈开发 D1
GH小杨
harmonyos华为typescript
鸿蒙全栈开发第一天第一部分:鸿蒙操作系统基础1.1鸿蒙发展史(深度解析)2012-01-012013-01-012014-01-012015-01-012016-01-012017-01-012018-01-012019-01-012020-01-012021-01-012022-01-012023-01-012024-01-01分布式技术预研微内核验证HarmonyOS1.0OpenHarmon
- CMake构建C++20 Module实例(使用MSVC)
arong-xu
ModernC++c++c++20linuxmodules
提醒:本文中的例子是在MSVC(MicrosoftVisualStudio2022Preview)编译环境上面测试通过的,截止文章更新时,没有在Clang/GCC上面验证通过.本文所有的源代码以及工程配置均可下载.背景在传统的C++编译过程中,代码的构建通常分为三个主要步骤:预处理:处理#include等指令,将头文件内容展开并插入到代码中.编译:将预处理后的代码转换为机器可以理解的目标文件.链接
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro