由于自己之前做了一个关于手机令牌的APK软件,在实现的过程中尽管使用了native so进行一定的逻辑算法保护,但是在自己逆向破解的过程中发现我的手机令牌关键数据能够“轻易地”暴露出来,所以我就想进一步的对其进行加固。于是,我使用的网上常用的梆梆加固、爱加密和阿里的聚安全应用来对我的apk进行一个加固保护。加固后,出于好奇心,我想对这些加固的原理进行一个了解,便于我自己能够实现这个加固的方法。于是开始了网上关于这方面的学习,我将这些加固的大致原理进行了一个总结,发现它们实现的最主要的方法就是利用了dex文件动态加载,将主逻辑的dex文件经过加密隐藏在壳程序的dex中,并在运行时通过so进行解密,并从内存读取dex数据,直接在native层进行一个动态加载。这样的实现有几个关键点:
下面我就对这几个问题进行一一的学习之旅。
关于第一个问题,其实经历了我很长时间的学习,主要是我在最开始学习的过程中,一直在dex的动态加载上面打转,由于关于dex的加载问题主要涉及到一个
DexClassLoder(String dexPath, String optimizedDirectory,String libraryPath ,ClassLoader parent)方法,所以我必须得有个dex的路径方法啊,这点让我真的很抓狂,所以只能硬着头皮写咯。
于是在http://blog.csdn.net/androidsecurity/article/details/8809542的帮助下完成了壳程序加载dex数据的方法。
DexClassLoder-> BaseDexClassLoader->DexPathList->makeDexElements-> loadDexFile-> loadDex->DexFile(String fileName)
1 package com.unshell.test; 2 3 import android.app.Application; 4 import java.io.BufferedInputStream; 5 import java.io.ByteArrayInputStream; 6 import java.io.ByteArrayOutputStream; 7 import java.io.DataInputStream; 8 import java.io.File; 9 import java.io.FileInputStream; 10 import java.io.FileOutputStream; 11 import java.io.IOException; 12 import java.lang.ref.WeakReference; 13 import java.util.ArrayList; 14 import java.util.HashMap; 15 import java.util.Iterator; 16 import java.util.zip.ZipEntry; 17 import java.util.zip.ZipInputStream; 18 19 import dalvik.system.DexClassLoader; 20 import android.app.Instrumentation; 21 import android.content.Context; 22 import android.content.pm.ApplicationInfo; 23 import android.content.pm.PackageManager; 24 import android.content.pm.PackageManager.NameNotFoundException; 25 import android.os.Bundle; 26 27 public class ProxyApplication extends Application{ 28 private static final String appkey = "APPLICATION_CLASS_NAME"; 29 private String apkFileName; 30 private String odexPath; 31 private String libPath; 32 33 //这是context 赋值 34 @Override 35 protected void attachBaseContext(Context base) { 36 super.attachBaseContext(base); 37 try { 38 //创建两个文件夹payload_odex,payload_lib 私有的,可写的文件目录 39 File odex = this.getDir("payload_odex", MODE_PRIVATE); 40 File libs = this.getDir("payload_lib", MODE_PRIVATE); 41 odexPath = odex.getAbsolutePath(); 42 libPath = libs.getAbsolutePath(); 43 apkFileName = odex.getAbsolutePath() + "/payload.apk"; 44 File dexFile = new File(apkFileName); 45 if (!dexFile.exists()) 46 { 47 dexFile.createNewFile(); //在payload_odex文件夹内,创建payload.apk 48 // 读取程序classes.dex文件 49 byte[] dexdata = this.readDexFileFromApk(); 50 // 分离出解壳后的apk文件已用于动态加载 51 this.splitPayLoadFromDex(dexdata); 52 } 53 // 配置动态加载环境 54 Object currentActivityThread = RefInvoke.invokeStaticMethod( 55 "android.app.ActivityThread", "currentActivityThread", 56 new Class[] {}, new Object[] {});//获取主线程对象 http://blog.csdn.net/myarrow/article/details/14223493 57 String packageName = this.getPackageName();//当前apk的包名 58 //下面两句不是太理解 59 HashMap mPackages = (HashMap) RefInvoke.getFieldOjbect( 60 "android.app.ActivityThread", currentActivityThread, 61 "mPackages"); 62 WeakReference wr = (WeakReference) mPackages.get(packageName); 63 //创建被加壳apk的DexClassLoader对象 加载apk内的类和本地代码(c/c++代码) 64 DexClassLoader dLoader = new DexClassLoader(apkFileName, odexPath, 65 libPath, (ClassLoader) RefInvoke.getFieldOjbect( 66 "android.app.LoadedApk", wr.get(), "mClassLoader")); 67 //base.getClassLoader(); 是不是就等同于 (ClassLoader) RefInvoke.getFieldOjbect()? 有空验证下//? 68 //把当前进程的DexClassLoader 设置成了被加壳apk的DexClassLoader ----有点c++中进程环境的意思~~ 69 RefInvoke.setFieldOjbect("android.app.LoadedApk", "mClassLoader", 70 wr.get(), dLoader); 71 72 73 } catch (Exception e) { 74 // TODO Auto-generated catch block 75 e.printStackTrace(); 76 } 77 } 78 79 @Override 80 public void onCreate() { 81 { 82 // 如果源应用配置有Appliction对象,则替换为源应用Applicaiton,以便不影响源程序逻辑。 83 String appClassName = null; 84 //获取xml文件里配置的被加壳apk的Applicaiton 85 try { 86 ApplicationInfo ai = this.getPackageManager() 87 .getApplicationInfo(this.getPackageName(), 88 PackageManager.GET_META_DATA); 89 Bundle bundle = ai.metaData; 90 if (bundle != null 91 && bundle.containsKey("APPLICATION_CLASS_NAME")) { 92 appClassName = bundle.getString("APPLICATION_CLASS_NAME");//className 是配置在xml文件中的。 93 } else { 94 return; 95 } 96 } catch (NameNotFoundException e) { 97 // TODO Auto-generated catch block 98 e.printStackTrace(); 99 } 100 //有值的话调用该Applicaiton 101 Object currentActivityThread = RefInvoke.invokeStaticMethod( 102 "android.app.ActivityThread", "currentActivityThread", 103 new Class[] {}, new Object[] {}); 104 Object mBoundApplication = RefInvoke.getFieldOjbect( 105 "android.app.ActivityThread", currentActivityThread, 106 "mBoundApplication"); 107 Object loadedApkInfo = RefInvoke.getFieldOjbect( 108 "android.app.ActivityThread$AppBindData", 109 mBoundApplication, "info"); 110 //把当前进程的mApplication 设置成了null 111 RefInvoke.setFieldOjbect("android.app.LoadedApk", "mApplication", 112 loadedApkInfo, null); 113 Object oldApplication = RefInvoke.getFieldOjbect( 114 "android.app.ActivityThread", currentActivityThread, 115 "mInitialApplication"); 117 ArrayListmAllApplications = (ArrayList ) RefInvoke 118 .getFieldOjbect("android.app.ActivityThread", 119 currentActivityThread, "mAllApplications"); 120 mAllApplications.remove(oldApplication);//删除oldApplication 121 122 ApplicationInfo appinfo_In_LoadedApk = (ApplicationInfo) RefInvoke 123 .getFieldOjbect("android.app.LoadedApk", loadedApkInfo, 124 "mApplicationInfo"); 125 ApplicationInfo appinfo_In_AppBindData = (ApplicationInfo) RefInvoke 126 .getFieldOjbect("android.app.ActivityThread$AppBindData", 127 mBoundApplication, "appInfo"); 128 appinfo_In_LoadedApk.className = appClassName; 129 appinfo_In_AppBindData.className = appClassName; 130 Application app = (Application) RefInvoke.invokeMethod( 131 "android.app.LoadedApk", "makeApplication", loadedApkInfo, 132 new Class[] { boolean.class, Instrumentation.class }, 133 new Object[] { false, null });//执行 makeApplication(false,null) 134 RefInvoke.setFieldOjbect("android.app.ActivityThread", 135 "mInitialApplication", currentActivityThread, app); 136 137 138 HashMap mProviderMap = (HashMap) RefInvoke.getFieldOjbect( 139 "android.app.ActivityThread", currentActivityThread, 140 "mProviderMap"); 141 Iterator it = mProviderMap.values().iterator(); 142 while (it.hasNext()) { 143 Object providerClientRecord = it.next(); 144 Object localProvider = RefInvoke.getFieldOjbect( 145 "android.app.ActivityThread$ProviderClientRecord", 146 providerClientRecord, "mLocalProvider"); 147 RefInvoke.setFieldOjbect("android.content.ContentProvider", 148 "mContext", localProvider, app); 149 } 150 app.onCreate(); 151 } 152 } 153 154 /** 155 * 释放被加壳的apk文件,so文件 156 * @param data 157 * @throws IOException 158 */ 159 private void splitPayLoadFromDex(byte[] data) throws IOException { 160 161 int ablen = apkdata.length; 162 //取被加壳apk的长度 这里的长度取值,对应加壳时长度的赋值都可以做些简化 163 byte[] dexlen = new byte[4]; 164 System.arraycopy(apkdata, ablen - 4, dexlen, 0, 4); 165 ByteArrayInputStream bais = new ByteArrayInputStream(dexlen); 166 DataInputStream in = new DataInputStream(bais); 167 int readInt = in.readInt(); 168 System.out.println(Integer.toHexString(readInt)); 169 byte[] newdex = new byte[readInt]; 170 //把被加壳apk内容拷贝到newdex中 171 System.arraycopy(apkdata, ablen - 4 - readInt, newdex, 0, readInt); 172 //这里应该加上对于apk的解密操作,若加壳是加密处理的话 173 //?byte[] apkdata = decrypt(newdex); //解壳程序的dex并没有加密,所以也不需要解密 174 //写入apk文件 175 File file = new File(apkFileName); 176 try { 177 FileOutputStream localFileOutputStream = new FileOutputStream(file); 178 localFileOutputStream.write(newdex); 179 localFileOutputStream.close(); 180 181 182 } catch (IOException localIOException) { 183 throw new RuntimeException(localIOException); 184 } 185 186 //分析被加壳的apk文件 187 ZipInputStream localZipInputStream = new ZipInputStream( 188 new BufferedInputStream(new FileInputStream(file))); 189 while (true) { 190 ZipEntry localZipEntry = localZipInputStream.getNextEntry();//不了解这个是否也遍历子目录,看样子应该是遍历的 191 if (localZipEntry == null) { 192 localZipInputStream.close(); 193 break; 194 } 195 //取出被加壳apk用到的so文件,放到 libPath中(data/data/包名/payload_lib) 196 String name = localZipEntry.getName(); 197 if (name.startsWith("lib/") && name.endsWith(".so")) { 198 File storeFile = new File(libPath + "/" 199 + name.substring(name.lastIndexOf('/'))); 200 storeFile.createNewFile(); 201 FileOutputStream fos = new FileOutputStream(storeFile); 202 byte[] arrayOfByte = new byte[1024]; 203 while (true) { 204 int i = localZipInputStream.read(arrayOfByte); 205 if (i == -1) 206 break; 207 fos.write(arrayOfByte, 0, i); 208 } 209 fos.flush(); 210 fos.close(); 211 } 212 localZipInputStream.closeEntry(); 213 } 214 localZipInputStream.close(); 215 216 217 } 218 219 /** 220 * 从apk包里面获取dex文件内容(byte) 221 * @return 222 * @throws IOException 223 */ 224 private byte[] readDexFileFromApk() throws IOException { 225 ByteArrayOutputStream dexByteArrayOutputStream = new ByteArrayOutputStream(); 226 ZipInputStream localZipInputStream = new ZipInputStream( 227 new BufferedInputStream(new FileInputStream( 228 this.getApplicationInfo().sourceDir))); 229 while (true) { 230 ZipEntry localZipEntry = localZipInputStream.getNextEntry(); 231 if (localZipEntry == null) { 232 localZipInputStream.close(); 233 break; 234 } 235 if (localZipEntry.getName().equals("classes.dex")) { 236 byte[] arrayOfByte = new byte[1024]; 237 while (true) { 238 int i = localZipInputStream.read(arrayOfByte); 239 if (i == -1) 240 break; 241 dexByteArrayOutputStream.write(arrayOfByte, 0, i); 242 } 243 } 244 localZipInputStream.closeEntry(); 245 } 246 localZipInputStream.close(); 247 return dexByteArrayOutputStream.toByteArray(); 248 } 249 250 251 // //直接返回数据,读者可以添加自己解密方法 252 private byte[] decrypt(byte[] data) { 253 return data; 254 } 255 }
接着我们就要解决从内存dex的动态加载问题,于是根据我在看雪论坛上面学习的这几篇文章
http://blog.csdn.net/androidsecurity/article/details/9674251
http://www.kanxue.com/bbs/showthread.php?t=195865
实现了dex的读取数据
Jni关键代码基本都在译文博客中了,我们要做的是让它通过编译、得到so库。本地代码当然要有与之对应的java代码去加载才能用,通过上面对因为的总结,可以先这样定义 本地方法:
static native int loadDex(byte[] dex,long dexlen);
生成好对应的.h、.c文件之后把译文中给出的核心代码填上,下面才是难题,许多类型都是unknown的,ndk编译器会告诉你它不认识这些乱七八糟的玩意儿。接下来就是挨个补充定义了。
看着u4、u1这些从java程序猿眼中怪怪的类型我不禁长出一口气——幸亏当年是C出身的。溯本清源,在源码 /dalvik/vm/Common.h 类中找到了这群货的宏定义,于是照葫芦画瓢,在jni目录里弄了一个伪造版的Common.h,搜刮了一下所有需要定义的类型之后,这个文件基本上是这个样子的:
1 #ifndef DALVIK_COMMON_H_ 2 #define DALVIK_COMMON_H_ 3 4 #include5 #include 6 #include 7 #include 8 9 static union { char c[4]; unsigned long mylong; }endian_test = {{ 'l', '?', '?', 'b' } }; 10 #define ENDIANNESS ((char)endian_test.mylong) 11 12 //#if ENDIANNESS == "l" 13 #define HAVE_LITTLE_ENDIAN 14 //#else 15 //#define HAVE_BIG_ENDIAN 16 //#endif 17 18 #if defined(HAVE_ENDIAN_H) 19 # include 20 #else /*not HAVE_ENDIAN_H*/ 21 # define __BIG_ENDIAN 4321 22 # define __LITTLE_ENDIAN 1234 23 # if defined(HAVE_LITTLE_ENDIAN) 24 # define __BYTE_ORDER __LITTLE_ENDIAN 25 # else 26 # define __BYTE_ORDER __BIG_ENDIAN 27 # endif 28 #endif /*not HAVE_ENDIAN_H*/ 29 30 #if !defined(NDEBUG) && defined(WITH_DALVIK_ASSERT) 31 # undef assert 32 # define assert(x) \ 33 ((x) ? ((void)0) : (ALOGE("ASSERT FAILED (%s:%d): %s", \ 34 __FILE__, __LINE__, #x), *(int*)39=39, (void)0) ) 35 #endif 36 37 #define MIN(x,y) (((x) < (y)) ? (x) : (y)) 38 #define MAX(x,y) (((x) > (y)) ? (x) : (y)) 39 40 #define LIKELY(exp) (__builtin_expect((exp) != 0, true)) 41 #define UNLIKELY(exp) (__builtin_expect((exp) != 0, false)) 42 43 #define ALIGN_UP(x, n) (((size_t)(x) + (n) - 1) & ~((n) - 1)) 44 #define ALIGN_DOWN(x, n) ((size_t)(x) & -(n)) 45 #define ALIGN_UP_TO_PAGE_SIZE(p) ALIGN_UP(p, SYSTEM_PAGE_SIZE) 46 #define ALIGN_DOWN_TO_PAGE_SIZE(p) ALIGN_DOWN(p, SYSTEM_PAGE_SIZE) 47 48 #define CLZ(x) __builtin_clz(x) 49 50 /* 51 * If "very verbose" logging is enabled, make it equivalent to ALOGV. 52 * Otherwise, make it disappear. 53 * 54 * Define this above the #include "Dalvik.h" to enable for only a 55 * single file. 56 */ 57 /* #define VERY_VERBOSE_LOG */ 58 #if defined(VERY_VERBOSE_LOG) 59 # define LOGVV ALOGV 60 # define IF_LOGVV() IF_ALOGV() 61 #else 62 # define LOGVV(...) ((void)0) 63 # define IF_LOGVV() if (false) 64 #endif 65 66 67 /* 68 * These match the definitions in the VM specification. 69 */ 70 typedef uint8_t u1; 71 typedef uint16_tu2; 72 typedef uint32_tu4; 73 typedef uint64_tu8; 74 typedef int8_t s1; 75 typedef int16_t s2; 76 typedef int32_t s4; 77 typedef int64_t s8; 78 79 /* 80 * Storage for primitive types and object references. 81 * 82 * Some parts of the code (notably object field access) assume that values 83 * are "left aligned", i.e. given "JValue jv", "jv.i" and "*((s4*)&jv)" 84 * yield the same result. This seems to be guaranteed by gcc on big- and 85 * little-endian systems. 86 */ 87 88 #define OFFSETOF_MEMBER(t, f) \ 89 (reinterpret_cast<char*>( \ 90 &reinterpret_cast (16)->f) - \ 91 reinterpret_cast<char*>(16)) 92 93 #define NELEM(x) ((int) (sizeof(x) / sizeof((x)[0]))) 94 95 union JValue { 96 #if defined(HAVE_LITTLE_ENDIAN) 97 u1 z; 98 s1 b; 99 u2 c; 100 s2 s; 101 s4 i; 102 s8 j; 103 float f; 104 double d; 105 void* l; 106 #endif 107 #if defined(HAVE_BIG_ENDIAN) 108 struct { 109 u1_z[3]; 110 u1z; 111 }; 112 struct { 113 s1_b[3]; 114 s1b; 115 }; 116 struct { 117 u2_c; 118 u2c; 119 }; 120 struct { 121 s2_s; 122 s2s; 123 }; 124 s4 i; 125 s8 j; 126 float f; 127 double d; 128 void* l; 129 #endif 130 }; 131 132 /* 133 * Array objects have these additional fields. 134 * 135 * We don't currently store the size of each element. Usually it's implied 136 * by the instruction. If necessary, the width can be derived from 137 * the first char of obj->clazz->descriptor. 138 */ 139 typedef struct { 140 void*clazz; 141 u4 lock; 142 u4 length; 143 u1* contents; 144 }ArrayObject ; 145 146 #endif // DALVIK_COMMON_H_
这里面还有个大小端的问题,不过为求实验先通过就先定义死,过了再说。
还有个值得一提的结构就是最后面的ArrayObject,这玩意定义在源码的/dalvik/vm/oo/Object.h 中,原本的定义是这样的:
1 struct Object { 2 ClassObject*clazz; 3 u4 lock; 4 }; 5 6 struct ArrayObject : Object { 7 u4 length; 8 u8 contents[1]; 9 };
如果还实实在在的去弄一个ClassObject,那就是java中毒已深的表现,根据看雪里面的相关讨论(就是文首提到的两篇),直接如上定义了。得到最后的C代码如下:
1 #include "com_android_dexunshell_NativeTool.h" 2 #include3 #include 4 #include 5 6 JNINativeMethod *dvm_dalvik_system_DexFile; 7 void (*openDexFile)(const u4* args,union JValue* pResult); 8 9 int lookup(JNINativeMethod *table, const char *name, const char *sig, 10 void (**fnPtrout)(u4 const *, union JValue *)) 11 { 12 int i = 0; 13 while (table[i].name != NULL) 14 { 15 LOGI("lookup %d %s" ,i,table[i].name); 16 if ((strcmp(name, table[i].name) == 0) 17 && (strcmp(sig, table[i].signature) == 0)) 18 { 19 *fnPtrout = table[i].fnPtr; 20 return 1; 21 } 22 i++; 23 } 24 return 0; 25 } 26 27 /* This function will be call when the library first be load. 28 * You can do some init in the libray. return which version jni it support. 29 */ 30 JNIEXPORT jint JNI_OnLoad(JavaVM* vm, void* reserved) 31 { 32 void *ldvm = (void*) dlopen("libdvm.so", RTLD_LAZY); 33 dvm_dalvik_system_DexFile = (JNINativeMethod*) dlsym(ldvm, 34 "dvm_dalvik_system_DexFile"); 35 if(0 == lookup(dvm_dalvik_system_DexFile, "openDexFile", "([B)I", 36 &openDexFile)) 37 { 38 openDexFile = NULL; 39 LOGE("method does not found "); 40 }else 41 { 42 LOGI("method found ! HAVE_BIG_ENDIAN"); 43 } 44 LOGI("ENDIANNESS is %c" ,ENDIANNESS ); 45 void *venv; 46 LOGI("dufresne----->JNI_OnLoad!"); 47 if ((*vm)->GetEnv(vm, (void**) &venv, JNI_VERSION_1_4) != JNI_OK) 48 { 49 LOGE("dufresne--->ERROR: GetEnv failed"); 50 return -1; 51 } 52 return JNI_VERSION_1_4; 53 } 54 55 JNIEXPORT jint JNICALL Java_com_android_dexunshell_NativeTool_loadDex( 56 JNIEnv * env, jclass jv, jbyteArray dexArray, jlong dexLen) 57 { 58 // header+dex content 59 u1 * olddata = (u1*)(*env)-> GetByteArrayElements(env,dexArray, NULL); 60 char* arr; 61 arr=(char*)malloc(16+dexLen); 62 ArrayObject *ao=(ArrayObject*)arr; 63 ao->length=dexLen; 64 memcpy(arr+16,olddata,dexLen); 65 u4 args[] = { (u4) ao }; 66 union JValue pResult; 67 jint result; 68 LOGI("call openDexFile 33..." ); 69 if(openDexFile != NULL) 70 { 71 openDexFile(args,&pResult); 72 } 73 else 74 { 75 result = -1; 76 } 77 78 result = (jint) pResult.l; 79 LOGI("Java_com_android_dexunshell_NativeTool_loadDex %d" , result); 80 return result; 81 }
Java层
底层代码基本了然,也就是说译文提供的思路基本实现,剩下其他加壳的事儿还要自己动脑筋补上。现在java层我们有一个可以使用的以byte数组为参数的加载dex的接口了:
static native int loadDex(byte[] dex,long dexlen);
要知道我们花这么大力气实现的这个方法,实际意义在于让源程序的dex数据在内存中传递,而不是必须保存在某个地方、以文件的方式。也就是说,我们需要一个新的DexClassLoader,去替换在上一篇提到的基础加壳方案中自定义Application—— ProxyApplication 类,通过反射设置到”android.app.LoadedApk”中mClassLoder属性的那个系统DexClassLoader,即至少那一段应该改成这样:
1 DynamicDexClassLoder dLoader = new DynamicDexClassLoder(base,srcdata, 2 libPath, (ClassLoader) RefInvoke.getFieldOjbect( 3 "android.app.LoadedApk", wr.get(), "mClassLoader"), 4 getPackageResourcePath(),getDir(".dex", MODE_PRIVATE).getAbsolutePath() ); 5 6 RefInvoke.setFieldOjbect("android.app.LoadedApk", "mClassLoader", wr.get(), dLoader);
没错,DynamicDexClassLoder 它的构造参数中应当去接收源程序的dex数据,以byte数组的形式,这样、相关把dex数组保存为文件那段代码可以删除,/data/data 中相关目录就找不到缓存dex文件的身影了;
替换DexClassLoader,要知道相对于系统版本的加载器我们的少了什么,又多出了什么,在一一对接上,就没问题了。少了什么呢?是dex文件路径、多出了什么呢?是dex byte数组,考虑到已经实现的jni库,那就是多了一个加载好的dex文件对应的cookie值。那么,这个
Cookie 是否能够完成替换呢?这需要到源码中找答案。
源码路径:libcore/dalvik/src/main/java/dalvik/system ,生成类图,取出DexClassLoader相关的一部分:
走读几遍代码基本就能了解,对于dex文件加载而言,DynamicDexClassLoder需要做的实际上只有一件事,复写findClass方法,使APK运行时能够找到和加载源程序dex中的类,至于如何实现,从类图上就可以看出,最后实际上追溯到DexFile类,可以利用到jni加载到的cookie,通过反射DexFile中的方法,实现我们的预期,具体实现如下:
package com.android.dexunshell; import java.io.IOException; import java.net.URL; import java.util.Enumeration; import com.eebbk.mingming.k7utils.ReflectUtils; import android.content.Context; import android.util.Log; import android.view.LayoutInflater; import dalvik.system.DexClassLoader; import dalvik.system.DexFile; public class DynamicDexClassLoder extends DexClassLoader { private static final String TAG = DynamicDexClassLoder.class.getName(); private int cookie; private Context mContext; /** * 原构造 * * @param dexPath * @param optimizedDirectory * @param libraryPath * @param parent */ public DynamicDexClassLoder(String dexPath, String optimizedDirectory, String libraryPath, ClassLoader parent) { super(dexPath, optimizedDirectory, libraryPath, parent); } /** * 直接从内存加载 新构造 * * @param dexBytes * @param libraryPath * @param parent * @throws Exception */ public DynamicDexClassLoder(Context context, byte[] dexBytes, String libraryPath, ClassLoader parent, String oriPath, String fakePath) { super(oriPath, fakePath, libraryPath, parent); setContext(context); setCookie(NativeTool.loadDex(dexBytes, dexBytes.length)); } private void setCookie(int kie) { cookie = kie; } private void setContext(Context context) { mContext = context; } private String[] getClassNameList(int cookie) { return (String[]) ReflectUtils.invokeStaticMethod(DexFile.class, "getClassNameList", new Class[] { int.class }, new Object[] { cookie }); } private Class defineClass(String name, ClassLoader loader, int cookie) { return (Class) ReflectUtils.invokeStaticMethod(DexFile.class, "defineClass", new Class[] { String.class, ClassLoader.class, int.class }, new Object[] { name, loader, cookie }); } @Override protected Class> findClass(String name) throws ClassNotFoundException { Log.d(TAG, "findClass-" + name); Class> cls = null; String as[] = getClassNameList(cookie); for (int z = 0; z < as.length; z++) { if (as[z].equals(name)) { cls = defineClass(as[z].replace('.', '/'), mContext.getClassLoader(), cookie); } else { defineClass(as[z].replace('.', '/'), mContext.getClassLoader(), cookie); } } if (null == cls) { cls = super.findClass(name); } return cls; } @Override protected URL findResource(String name) { Log.d(TAG, "findResource-" + name); return super.findResource(name); } @Override protected EnumerationfindResources(String name) { Log.d(TAG, "findResources ssss-" + name); return super.findResources(name); } @Override protected synchronized Package getPackage(String name) { Log.d(TAG, "getPackage-" + name); return super.getPackage(name); } @Override protected Class> loadClass(String className, boolean resolve) throws ClassNotFoundException { Log.d(TAG, "loadClass-" + className + " resolve " + resolve); Class> clazz = super.loadClass(className, resolve); if (null == clazz) { Log.e(TAG, "loadClass fail,maybe get a null-point exception."); } return clazz; } @Override protected Package[] getPackages() { Log.d(TAG, "getPackages sss-"); return super.getPackages(); } @Override protected Package definePackage(String name, String specTitle, String specVersion, String specVendor, String implTitle, String implVersion, String implVendor, URL sealBase) throws IllegalArgumentException { Log.d(TAG, "definePackage" + name); return super.definePackage(name, specTitle, specVersion, specVendor, implTitle, implVersion, implVendor, sealBase); }
它的启动过程就是:
但是有一个地方我确实很难理解就是为什么自己写了一个loadDex的方法为什么在它的前面还是要有
super(oriPath, fakePath, libraryPath, parent);
于是就有了我进一步的跟踪DexClassLoader的这一些方法的过程了,它的调用关系如下:
DexClassLoder-> BaseDexClassLoader->DexPathList->makeDexElements-> loadDexFile-> loadDex->DexFile(String fileName)
而且在
1 private static DexFile loadDexFile(File file, File optimizedDirectory) 2 throws IOException { 3 if (optimizedDirectory == null) { 4 return new DexFile(file); 5 } else { 6 String optimizedPath = optimizedPathFor(file, optimizedDirectory); 7 return DexFile.loadDex(file.getPath(), optimizedPath, 0); 8 } 9 }
我就明白了,原来DexLoader也实现了DexFile操作,但是这些操作的实现在这个过程中不仅仅只是完成了dex的一个加载,另外也实现了class的映射方便上层去调用底层的方法。