- 《流浪地球》:当太阳将要死去,让我们带着地球去流浪
逝去的往昔
春节假期,看了两场电影,今天的《流浪地球》看得震撼至极。影片改编于刘慈欣的同名小说,观影之前特意在微信读书上阅读完了那个短篇。图片发自App我对科幻其实是无感的。拗不过孩子们的期盼,还是跟他们一起去了影院。看完之后才知道自己是多么浅薄。电影的效果跟书籍是无法相比的。看完书已经折服于大刘的想象力了,看完电影更加感叹导演的尽心竭力,正如预告片中所言,郭帆与他的队友在四年的时间里,将影片做到了最优化。试
- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- 数学建模笔记——动态规划
liangbm3
数学建模笔记数学建模笔记动态规划python背包问题算法优化问题
数学建模笔记——动态规划动态规划1.模型原理2.典型例题2.1例1凑硬币2.2例2背包问题3.python代码实现3.1例13.2例2动态规划1.模型原理动态规划是运筹学的一个分支,通常用来解决多阶段决策过程最优化问题。动态规划的基本想法就是将原问题转换为一系列相互联系的子问题,然后通过逐层地推来求得最后的解。目前,动态规划常常出现在各类计算机算法竞赛或者程序员笔试面试中,在数学建模中出现的相对较
- 数学建模笔记—— 非线性规划
liangbm3
数学建模笔记数学建模笔记pythonmatlab非线性规划算法学习优化问题
数学建模笔记——非线性规划非线性规划1.模型原理1.1非线性规划的标准型1.2非线性规划求解的Matlab函数2.典型例题3.matlab代码求解3.1例1一个简单示例3.2例2选址问题1.第一问线性规划2.第二问非线性规划非线性规划非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn)和托克(A.W.T
- [01] 动态规划解题套路框架
_魔佃_
本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?刷题刷多了就会发现,算法技巧就那几个套路。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。labuladong的算法小抄首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不
- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- 最优化方法Python计算:一元函数搜索算法——二分法
戌崂石
最优化方法最优化方法python
设一元目标函数f(x)f(x)f(x)在区间[a0,b0]⊆R[a_0,b_0]\subseteq\text{R}[a0,b0]⊆R(其长度记为λ\lambdaλ)上为单峰函数,且在(a0,b0)(a_0,b_0)(a0,b0)内连续可导,即其导函数f′(x)f'(x)f′(x)在(a0,b0)(a_0,b_0)(a0,b0)内连续。在此增强的条件下,可以加速迭代计算压缩区间的过程。仍然设置计算精
- 动态规划算法:
我不会JAVA!
算法动态规划
动态规划算法简介动态规划(DynamicProgramming,DP)是一种将复杂问题分解为更简单的子问题来求解的算法思想。它通过保存中间子问题的解,避免了重复计算,从而大大提高了解决问题的效率。动态规划通常用于求解最优化问题,比如最短路径、最大收益等。动态规划解题步骤确定状态:明确在问题的某一步中,需要存储什么信息来描述子问题的解。状态转移方程:找出如何通过前一步的状态来得到当前状态,即如何递推
- 最高效的学习方法
君子务本2022
在信息爆炸的时代,我们需要面对的挑战与日俱增,学习是我们提升能力,增加代偿的必由之路!可是时间和注意力这些稀缺资源注定越来越稀缺,我们怎么在有限的时间内取得最好学习效果是我们今天每一个人都必须解决的问题。万维钢的《精英日课》分享了一个实现学习效率最优化的比例,今天读来受益匪浅。写此笔记作为的开篇之作,向万维钢老师致谢,向亚利桑那大学和布朗大学的研究者致敬!三个知识点:学习区、心流、喜欢公式1、学习
- 提醒一下技术人,你是不是陷入局部最优了
ngu2008
首先看一张函数图像:函数图像很明显,这个函数最小值点在E点,而A、C、G是函数的局部极小值点。我读书期间学的数学专业,研究的方向就是最优化算法,说的直白点,就是找函数的最小值点,如果得找到了E点就说明成功了,可是如果只找到了A、C、G中的一个就停滞,这时算法就陷入局部最优了,这个时候就需要修改算法,需要加入一些扰动或者其他策略,避免函数陷入局部最优解,所以最优化算法有一个非常重要的点就是要避免算法
- 没有免费的午餐定理
做程序员的第一天
机器学习人工智能机器学习
没有免费午餐定理(NoFreeLunchTheorem,NFL)是由Wolpert和Macerday在最优化理论中提出的.没有免费午餐定理证明:对于基于迭代的最优化算法,不存在某种算法对所有问题(有限的搜索空间内)都有效.如果一个算法对某些问题有效,那么它一定在另外一些问题上比纯随机搜索算法更差.也就是说,不能脱离具体问题来谈论算法的优劣,任何算法都有局限性.必须要“具体问题具体分析”.没有免费午
- LED恒流驱动芯片方案合集-主要应用于热门行业智能家居调光、RGB五路摄影灯补光灯、12V升压汽车车灯、调光电源模块、大功率舞台灯、太阳能灯带、应急灯、显示器背光等LED恒流驱动方案
远翔调光芯片^13828798872
智能家居汽车计算机外设能源科技
深圳市雅欣控制技术有限公司,在芯片行业深耕二十载。是Feeling和MST在深圳的一级代理商。致力于推广销售电源管理芯片、LED驱动芯片和霍尔开关系列产品,为您提供最优化的解决方案、最优质的产品及咨询服务。远翔各型号应用分类:降压芯片:FP6161,FP6188,FP6150B,FP6151。升压芯片:FP5139,FP5207,FP5217,FP6291,FP6293,FP6296,FP6298
- 【算法】动态规划
小匠码农
数据结构与算法算法动态规划
文章目录一、动态规划概念二、算法思想三、算法步骤四、应用场景五、动态规划优缺点一、动态规划概念 动态规划(DynamicProgramming,简称DP)是一种广泛应用于数学、计算机科学和经济学等领域的方法论。其核心思想是通过将复杂问题分解为相对简单的子问题,并存储子问题的解以避免冗余计算,从而显著提高计算效率。 动态规划作为运筹学的一个分支,专注于解决决策过程的最优化问题。20世纪50年代初
- Python实现贪心算法
闲人编程
pythonpython贪心算法开发语言活动问题算法
目录贪心算法简介贪心算法的基本思想贪心算法的应用场景活动选择问题Python实现活动选择问题代码解释活动选择问题的解贪心算法的正确性分析贪心算法的其他应用贪心算法的局限性贪心算法的优化与变种总结贪心算法简介贪心算法(GreedyAlgorithm)是一种在求解最优化问题时的常用算法。它的核心思想是在每一步选择中都选择当前状态下看似最优的选项,希望通过一系列的局部最优选择能够得到全局最优解。由于其简
- 机器学习最优化方法之梯度下降
whemy
1、梯度下降出现的必然性利用最小二乘法求解线性回归的参数时,求解的过程中会涉及到矩阵求逆的步骤。随着维度的增多,矩阵求逆的代价会越来越大,而且有些矩阵没有逆矩阵,这个时候就需要用近似矩阵,影响精度。另外,在绝大多数机器学习算法情况下(如LR),损失函数要复杂的多,根本无法得到参数估计值的表达式。因此需要一种更普适的优化方法,这就是梯度下降。其实随机梯度下降才是实际应用中最常用的求解方法,但是其基础
- 动手学习深度学习——2.5 自动微分
X_Imagine
动手学习深度学习深度学习人工智能自动微分
2.5自动微分 正如【2.4微积分】所说,微分是深度学习中几乎所有最优化算法的关键步骤。虽然求这些导数的计算过程很简单,只需要一些基本的微积分知识。但对于复杂的模型,手工计算参数的更新可能很痛苦(而且经常容易出错)。深度学习框架通过自动计算导数加快了这一工作,即自动微分(AutomaticDifferentiation)。在实践中,基于我们设计的模型,系统构建了一个计算图,跟踪哪些数据结合哪些操
- 深度学习之反向传播算法(backward())
Tomorrowave
人工智能深度学习算法人工智能
文章目录概念算法的思路概念反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)算法的思路多层神经网络的教学过程反向传播算法为了说明这一点使用如下图所示处理具有两个输入和一
- 动态规划入门 & 线性动态规划
益达915
算法动态规划线性DP动态规划线性动态规划概念
参考文献:全国青少年信息学竞赛培训教材——复赛(陈合力游光辉编著)一、概念在多阶段决策的问题中,各阶段采取的决策,一般俩说是与空间或者时间相关的。决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来,故有动态的含义。我们称这种解决多阶段决策最优化的过程称为动态规划方法。例如在一个m*n的迷宫中,从左下角走到右上角可以看到,状态A和状态B应当属于同一个阶段。T可以从A走来
- 基于PPNSA+扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
软件算法开发
MATLAB程序开发#优化甘特图PPNSA扰动算子车间调度优化
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述基于PPNSA+扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图和优化收敛曲线。2.测试软件版本以及运行结果展示MATLAB2022a版本运行3.核心程序......................................................
- 《原则》5
颜影忆
1:个体的激励机制必须符合群体的目标。自然创造了各种激励机制,促使追求自身利益的个体带来整体的进步2:现实为了整体趋向最优化,而不是为了个体。为整体做贡献,你就可能收货回报。3:通过快速试错以适应现实是无价的;不需要任何人的理解或引导,自然选择的试错就能实现改进。4:意识到你即是一切又什么都不是,并决定你想成为什么样子。5:你的未来取决于你的视角。
- 实验4:最优化模型实验
一个毛毛虫
电子科技大学数学实验练习题matlab数学建模
实验4:最优化模型实验4.1基础训练求函数极值求一元函数f(x)=exsinxf(x)=e^xsinxf(x)=exsinx在区间[0,9]内的最大值点、最大值,并绘制出函数图形,编写function程序文件返回2个参数,依次返回最大值点、最大值.提示:调用函数fminbnd计算;先绘制函数曲线,通过观察确定最大值点所在区间.参考函数如下:function[x0,y0]=fun代码:functio
- 最优化问题06-谢泼德引理
凡有言说
谢泼德引理(Shephard'slemma)是微观经济学中的一个重要结论,可以由包络定理得到。在给定支出函数情况下,对p求偏导可得到希克斯需求函数。12
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- Logistic回归
洛克黄瓜
Logistic回归假设有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程称作回归。训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。二值型输出分类器Sigmoid函数image.png为了实现Logistic回归分类器,在每个特征值上乘以一个回归系数,然后把所有值相加,将这个总和代入上述函数中,进而得到一个范围在0~1之间的数值。任何大于0.5的数据分为
- 模拟退火算法
aaa8db431342
学号:17020150083姓名:许学同原文链接:https://blog.csdn.net/weixin_40562999/article/details/80853354【嵌牛导读】著名的模拟退火算法,它是一种基于蒙特卡洛思想设计的近似求解最优化问题的方法。【嵌牛鼻子】模拟退火算法【嵌牛正文】一点历史——如果你不感兴趣,可以跳过美国物理学家N.Metropolis和同仁在1953年发表研究复杂
- LeetCode 动态规划专题 5:0-1 背包问题
李威威
这一节我们介绍使用动态规划解决的一个非常经典的问题:0-1背包问题。0-1背包问题描述问题描述:有一个背包,它的容量为(Capacity)。现在有种不同的物品,编号为,其中每一件物品的重量为,价值为。问可以向这个背包中盛放哪些物品,使得在不超过背包容量的基础上,物品的总价值最大。这个问题其实是一个有约束的最优化问题。思路1:暴力解法。我们最容易想到的是暴力解法,因为每一件物品都可以放进背包,也可以
- 机器学习 | 凸/非凸目标函数 |非凸目标函数导致求解陷入局部最优
stone_fall
图像处理与机器学习
数学中最优化问题的一般表述是求取x∗∈χx^{*}\in\chix∗∈χ,使f(x∗)=min{f(x):x∈χ}f(x^{*})=min\{f(x):x\in\chi\}f(x∗)=min{f(x):x∈χ},其中x是n维向量,χ\chiχ是x的可行域,f是χ\chiχ上的实值函数。凸优化问题是指χ\chiχ是闭合的凸集且f是χ\chiχ上的凸函数的最优化问题,这两个条件任一不满足则该问题即为非
- 【TSP问题】基于遗传算法求解快递运输成本最优化问题GA-MTSP附Matlab代码
天天Matlab代码科研顾问
路径规划matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍1.问题描述旅行商问题(TSP)是一个经典的组合优化问题,它要求在给定一组城市和城市之间的距离的情况下
- 袁亚湘院士上《开讲啦》变数学魔术啦!
MatheMagician
人工智能hashtabletabxhtmlj2ee
早点关注我,精彩不迷路!上个月中,我敬仰已久的袁亚湘院士登上了央视《开讲啦》的舞台,给刚开学不久的孩子们献上了精彩的演讲,演讲全程大家可看视频慢慢欣赏:视频1袁亚湘院士《开讲啦》演讲袁老师是知名的最优化理论的专家,在我还在读大三的时候,还曾通过天大数学系黄老师介绍,邮件联系袁老,想找他去读最优化方向的研究生。无奈专业差距太大,在流程上也几乎走不通,不过袁老师还是耐心地给我回了信,并且给了我很多鼓励
- 【MATLAB源码-第138期】基于matlab的D2D蜂窝通信仿真,对比启发式算法,最优化算法和随机算法的性能。
Matlab程序猿
通信系统MATLAB通信原理matlab信息与通信算法
操作环境:MATLAB2022a1、算法描述D2D蜂窝通信介绍D2D蜂窝通信允许在同一蜂窝网络覆盖区域内的终端设备直接相互通信,而无需数据经过基站或网络核心部分转发。这种通信模式具有几个显著优点:首先,它可以显著降低通信延迟,因为数据传输路径更短;其次,由于减少了基站的中转,可以提高数据传输的能效,从而延长终端设备的电池寿命;再次,D2D通信可以提高系统容量和频谱效率,因为同一地理区域内的频谱可以
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =