- 集训DAY7之线性dp与前缀优化/stl优化
心之所向凉月空
c++开发语言数据结构算法
集训DAY7之线性DP与前缀优化/STL优化目录DP的概念与思想核心DP的题目类型线性DP详解DP的优化策略后记DP的概念与思想核心DP的定义DP也就是动态规划(DynamicProgramming)是求解决策过程最优化的过程动态规划主要用于求解以时间划分阶段的动态过程的优化问题DP的基本思想动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中我们常常需要在多个可行解中寻找最优解,其基本思
- 【动态规划】一次性整理子序列问题题型系列,八个例题实战详细解析 (包含我自己精心整理的动态规划解题思路)
ngioig
动态规划leetcode算法职场和发展后端
前言最近刷了子序列系列的题型,一共八个力扣题,这里对子序列问题进行一个简单的总结,全是动态规划的解法,当然里边有些题选有更优的解法。1.动态规划解题思路动态规划(DynamicProgramming,DP)是一种在计算机科学和数学中用于解决最优化问题的方法。它特别适用于可以分解为互相重叠的子问题的问题,并且这些子问题的解可以被存储起来以避免重复计算,从而提高效率。首先,我们要熟悉动态规划的套路也要
- 【学习】《算法图解》第十一章学习笔记:动态规划
程序员
一、动态规划概述动态规划(DynamicProgramming,简称DP)是一种通过将复杂问题分解为更简单的子问题来解决问题的方法。它是一种强大的算法设计技术,特别适用于具有重叠子问题和最优子结构性质的问题。(一)算法适用场景动态规划主要适用于以下场景:最优化问题(求最大值、最小值)计数问题(求方案数)具有重叠子问题特性的问题具有最优子结构特性的问题(二)算法基本思想动态规划的核心思想是:将原问题
- 【学习】《算法图解》第十章学习笔记:贪婪算法
程序员
一、贪婪算法概述贪婪算法(GreedyAlgorithm)是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。贪婪算法不从整体最优上加以考虑,它所做出的选择只是在某种意义上的局部最优选择。(一)算法适用场景贪婪算法适用于具有"贪心选择性质"的问题,即局部最优选择能导致全局最优解的问题。主要应用于:需要求解最优化问题问题具有贪心选择性质问题具有最优子结构性质(二
- 算法导论:动态规划-钢条切割
tttoff
算法动态规划
一、动态规划定义区别于分治法,动态规划(dynamicprogramming)的子问题是有重叠的。常用于最优化问题(optimizationproblem)。二、钢条切割问题2.1步骤分解(1)刻画最优解的结构特征如何得到最大的收益->切割or不切割->则最大收益可以由两个子方案组成,即最大收益=max(不切割的收益,切割的收益)(2)递归地定义最优解的值不切割的收益的已知,则需定义切割的收益。由
- python scipy简介
凤枭香
Python图像处理pythonscipy开发语言图像处理
scipyscipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算库。主要包含了统计学、最优化、线性代数、积分、傅里叶变换、信号处理和图像处理以及常微分方程的求解以及其他科学工程中所用到的计算。scipy模块介绍scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法co
- 50行matlab算法,一个用matlab实现的50行的实数染色体遗传算法程序 - 计算模拟 - 小木虫 - 学术 科研 互动社区...
kotlit
50行matlab算法
【本文属作者原创,但已发表于科学网(链接地址:http://blog.sciencenet.cn/blog-3102863-1029280.html),现稍作格式上的修该后转载,并发金币祝大家新年快乐!】1.引言遗传算法(geneticalgorithms)是一种很有意思最优化方法,常用于解决一些传统方法力所不及的多变量最优化问题。这种方法很通用,即用同样的思想可以解决很多不同的问题。只要你能对问
- c++的内联函数
z_muyangren
c/c++编程
一、内联函数的利弊利:1、不需要蒙受函数调用所带来的额外开销。2、编译器最优化机制通常被设计用来浓缩那些“不含函数调用”的代码,当inline某个函数时,编译器就可以对它执行语境相关最优化。弊:1、inline函数的整体观念是,将“对函数的每一次调用”都以函数本体替换之,这样会增加目标码大小。2、inline造成的代码膨胀会导致额外的换页行为,降低指令高速缓存装置的命中率,以及伴随这些而来的效率损
- U-Mail邮件系统的安全性和可扩展性
U-Mail邮件系统
邮件系统安全
在当今数字化时代,电子邮件作为一种一种便捷、高效的通讯工具,为个人和企业提供了跨越地域和时差的交流方式,几乎成为我们生活中不可或缺的一部分。U-Mail邮件系统作为一个国产、高效的邮件系统,由于其安全、稳定、易于配置和维护的特点,在邮件服务市场上占据了重要的地位。U-Mail邮件系统是由深圳市福洽科技有限公司开发,设计上遵循了“集中管控、自动化、智能化、最简化、最优化”的原则,采用模块化设计,前端
- 动态规划算法精要与实战技巧
mikes zhang
算法动态规划
动态规划算法深度解析与应用实践一、算法概述动态规划(DynamicProgramming,DP)作为解决复杂决策问题的核心方法,在计算机科学领域已发展超过半个世纪。该算法通过RichardBellman在1953年提出的最优化原理,成功解决了多阶段决策过程中的效率问题。根据ACM最新统计,动态规划在算法竞赛中的使用频率高达32%,位列Top5常用算法之首。本算法主要适用于具有以下特征的问题:最优子
- 状态压缩动态规划:用二进制“魔法”破解组合难题
矢鱼
动态规划算法状态dpc++开发语言
在算法的世界里,动态规划(DP)一直是解决最优化问题的利器。而状态压缩动态规划(StateCompressionDP),作为动态规划的进阶技巧,更是以其独特的“二进制魔法”,为处理组合优化问题开辟了一条高效之路。本文将带你深入探索状态压缩DP的奥秘,结合经典案例与代码实现,揭开它神秘的面纱。一、什么是状态压缩动态规划?动态规划的核心在于将问题分解为子问题,并通过记录子问题的解来避免重复计算。而状态
- (秋招复习)自动驾驶与机器人中的SLAM技术(一)
什么都不会的小澎友
SLAM秋招复习自动驾驶SLAM秋招
秋招复习之--自动驾驶与机器人中的SLAM技术1前言第一章自动驾驶基础知识第二章基础数学知识回顾旋转的表示SO(3)的BCH近似运动学表示线速度与加速度的处理一些常见的雅可比滤波器和最优化理论第三章惯性导航与组合导航IMU系统运动学IMU航迹推算卫星导航基于ESKF的简单组合导航速度观测量第四章预积分什么是预积分预积分的测量模型噪声是干什么的?噪声模型!零偏怎么更新图优化模型怎么建总结前言不知不觉
- 算法设计:分支限界法的基础原理与应用
古月฿
算法设计与分析算法算法设计与分析分支限界法
目录分支限界法概述与回溯法的区别基本思想常见类型限界函数的构造分支限界法的应用1.单源最短路径问题2.0/1背包问题3.旅行商问题4.指派问题5.批处理作业问题优先级的确定与LC检索博弈搜索总结在计算机科学的算法设计与分析领域,分支限界法作为一种强大的工具,在解决各种最优化问题中发挥着关键作用。它为众多复杂问题提供了有效的求解思路,能够在合理的时间内找到问题的最优解。本文将深入探讨分支限界法的基本
- Python数据结构与算法(5)——动态规划
盼小辉丶
Python数据结构与算法python动态规划开发语言
Python数据结构与算法(5)——动态规划0.学习目标1.动态规划的基本概念1.1什么是动态规划1.2动态规划的核心思想1.3动态规划的适用条件2.动态规划的实现思路2.1自顶向下:备忘录法(Memoization)2.2自底向上:表格法(Tabulation)3.0/1背包问题4.最长公共子序列5.硬币找零问题小结0.学习目标动态规划(DynamicProgramming,DP)是解决最优化问
- 大模型部署工具 llama.cpp 介绍与安装使用_看完这篇就够了
大模型
llama微信人工智能学习agi产品经理
1.大模型部署工具llama.cpp大模型的研究分为训练和推理两个部分。训练的过程,实际上就是在寻找模型参数,使得模型的损失函数最小化,推理结果最优化的过程。训练完成之后,模型的参数就固定了,这时候就可以使用模型进行推理,对外提供服务。llama.cpp(https://github.com/ggerganov/llama.cpp)主要解决的是推理过程中的性能问题。主要有两点优化:llama.cp
- 模拟退火,百炼成钢
CIb0la
方法论生活学习程序人生
我是学专业数学出身,数学里有一个课程叫做最优化求解。英文是Optimization,中文直翻是最优化。一般是设置一个初始条件,然后在一个连续函数上找到符合条件的最大值或者最小值,通常在数学上叫做最优解。有时候,初始条件本身并不收窄,甚至就是一个函数范围,这会导致解有也不确定,变为一个范围或者说是有一个方程解。这时候的解被称作容许集。对于无约束的优化问题,如果函数是二次可微的话,那么可以通过找到目标
- 每天五分钟机器学习:支持向量机数学基础之超平面分离定理
每天五分钟玩转人工智能
每天五分钟玩转机器学习算法支持向量机机器学习人工智能超平面分离定理深度学习神经网络
本文重点超平面分离定理(SeparatingHyperplaneTheorem)是数学和机器学习领域中的一个重要概念,特别是在凸集理论和最优化理论中有着广泛的应用。该定理表明,在特定的条件下,两个不相交的凸集总可以用一个超平面进行分离。定义与表述超平面分离定理(SeparatingHyperplaneTheorem)又称凸集分离定理,其表述如下:定义:若C和D为非空凸集,且C∩D=∅,则存在非零向
- 经济金融最优化:从理论到MATLAB实践——最大利润问题全解析
青橘MATLAB学习
Matlab数学建模编程实验金融matlab最大利润问题
内容摘要本文聚焦经济金融领域的最大利润问题,深入探讨不考虑销售影响和考虑销售影响两种情形下的利润最大化模型柯布-道格拉斯生产函数等理论构建与求解。关键词:经济金融;最大利润问题;柯布-道格拉斯生产函数1.引言在经济金融领域,企业的核心目标之一便是追求利润最大化。而实现这一目标,需要对生产、销售等多个环节进行深入分析与优化决策。2.不考虑销售影响的最大利润问题2.1理论基础在不考虑销售因素时,假设厂
- NO.73十六届蓝桥杯备战|搜索算法-剪枝与优化-记忆化搜索|数的划分|小猫爬山|斐波那契数|Function|天下第一|滑雪(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯剪枝c++
剪枝与优化剪枝,形象得看,就是剪掉搜索树的分⽀,从⽽减⼩搜索树的规模,排除掉搜索树中没有必要的分⽀,优化时间复杂度。在深度优先遍历中,有⼏种常⻅的剪枝⽅法排除等效冗余如果在搜索过程中,通过某⼀个节点往下的若⼲分⽀中,存在最终结果等效的分⽀,那么就只需要搜索其中⼀条分⽀。可⾏性剪枝如果在搜索过程中,发现有⼀条分⽀是⽆论如何都拿不到最终解,此时就可以放弃这个分⽀,转⽽搜索其它的分⽀。最优性剪枝在最优化
- 蓝桥杯常用算法介绍:动态规划(DP)
启诚科技
算法蓝桥杯动态规划
蓝桥杯快到了,很多小伙伴私信小编,想让我介绍一些基础的算法,那么今天它来了!动态规划是一种通过将复杂问题分解为重叠子问题,并记录子问题解来避免重复计算的方法。其核心是状态定义和状态转移方程。在竞赛中,DP常用于解决最优化问题(如最大值、最小值)或计数问题(如路径总数)。典型的应用场景包括背包问题、最长子序列、路径规划等。洛谷题目推荐:P1048[NOIP2005普及组]采药题目链接:P1048采药
- 最优化方法(3):线性规划基本理论
♚放晴♛~
算法
系列笔记是本人在上最优化方法时整理的,参考书籍为经典的NumericalOptimization(SecondEdition)。笔记主要分为0~5共六个部分,包括优化基础、线搜索、带约束优化基础、线性规划、对偶理论、带约束凸优化算法,以及一些零散的部分。这里是第三部分,也就是线性规划基本理论。线性规划基本理论线性规划标准形式与转化线性规划问题有着如下形式:mincTxs.t.aiTx≤bi,i=
- 机器学习训练算法十(列文伯格-马夸尔特法(LM 法))
黎明鱼儿
算法机器学习matlab机器学习算法matlab
连续函数的最优化方法-LM法1、介绍2、数学原理3、阻尼因子更新策略4、列文伯格方法5、马夸尔特方法6、Matlab程序1、介绍列文伯格(1944)和马夸尔特(1963)先后对高斯牛顿法进行了改进,求解过程中引入了阻尼因子。将公式36的无约束最小二乘问题转变为公式44有约束最小二乘问题,其中,12×(∥DΔXk∥2−μ)⩽0\frac{1}{2}\times(\begin{Vmatrix}D\De
- K8s负载均衡全解析:从入门到实战的完整指南
ivwdcwso
运维与云原生kubernetes负载均衡容器云原生IngressService
Kubernetes(K8s)作为容器编排的标准,其负载均衡机制是构建高可用、高弹性应用的关键。本文将全面介绍K8s负载均衡的核心概念、实现方式及最佳实践,帮助开发者和运维人员构建稳定高效的云原生应用。一、K8s负载均衡的基础概念在Kubernetes生态系统中,负载均衡是指将工作负载分布到多个计算资源上的过程,以实现资源的最优化利用、最大化吞吐量、最小化响应时间并避免任何单一资源过载。1.1K8
- 【信奥一本通提高篇】基础算法之贪心算法
C-DHEnry
信奥一本通提高篇算法贪心算法
原文https://bbs.fmcraft.top/blog/index.php/archives/22/贪心算法概述近年来的信息学竞赛试题,经常出现求一个问题的可行解或最优解的题目。这类问题就是我们通常所说的最优化问题。贪心算法是求解这类问题的一种常用算法。在众多的算法中,贪心算法可以算得上是最接近人们日常思维的一种算法,常被信息学奥赛选手用来求解一些数据规模很大的问题。一、贪心算法贪心算法是从
- Deepseek给遥感人的学习与职业发展建议
Python与遥感
学习
Deepseek给遥感人的学习与职业发展建议一、夯实四大基础支柱物理基础深入理解电磁波谱特性(可见光/红外/微波)、大气传输模型、辐射定标原理;掌握不同传感器(光学/SAR/LiDAR)的成像机理与数据特性差异;推荐学习:《遥感物理与定量反演基础》。数学工具矩阵运算(影像处理核心)、傅里叶变换(SAR处理)、概率统计(分类算法);掌握数值分析、最优化理论(用于反演算法);实践推荐:用Python实
- Python贪心算法详解:如何解决最优组合问题
追逐程序梦想者
python贪心算法开发语言点云处理
Python贪心算法详解:如何解决最优组合问题贪心算法是一种求解最优化问题的经典算法,其基本思想是在每一个阶段选择最优的策略,从而得到全局最优解。在实际应用中,贪心算法适用于一些特殊类型的问题,如背包问题、最小生成树问题、任务调度问题等。Python作为一门高级编程语言,具有简洁、易用、高效等特点,在实现贪心算法时也非常方便。下面将通过具体例子来讲解如何使用Python来实现贪心算法,以解决最优组
- python 经典算法之--动态规划算法(Dynamic Programming Algorithm)
魔都霸王东
Python经典算法算法python动态规划
动态规划(DynamicProgramming,简称DP)是一种算法思想,它是求解一类最优化问题的有效工具。它通过将原问题分解为若干子问题,逐个求解子问题的最优解,从而得到原问题的最优解。动态规划算法的核心思想是“最优子结构”和“重叠子问题”。最优子结构:指问题的最优解由其子问题的最优解组合而成。重叠子问题:指在问题分解过程中,许多子问题的解是重复的。动态规划算法的基本步骤:确定状态:将原问题分解
- Leetcode-100 贪心算法
LuckyAnJo
leetcodeleetcode贪心算法算法
贪心算法简介贪心算法(GreedyAlgorithm)是一种常见的优化算法,用于解决最优化问题。该算法的核心思想是每次选择当前情况下的最优解,并期望通过这些局部最优解得到全局最优解。贪心算法通常用于那些可以分解为若干个子问题,且每个子问题的最优解可以合成全局最优解的问题。贪心算法之所以有用,是因为它可以快速地做出决策,并能在某些问题上实现较高的效率,避免了回溯与暴力解法的复杂度。贪心算法思想贪心算
- HTML语言的贪心算法
宇瞳月
包罗万象golang开发语言后端
HTML语言的贪心算法:理论与实践引言在编程和算法研究中,贪心算法是一种广泛应用的解决问题的方法。它通过对每一阶段选择最优解的方式来构建整个问题的解决方案。贪心算法不一定能在所有情况下得到最优解,但在许多实际问题中,它能够提供一个足够好的近似解。本文将探讨贪心算法的基本概念、典型应用、优缺点,并结合HTML语言的特点,提出一些具体的实现示例和思考。一、贪心算法的基本概念贪心算法是一种求解最优化问题
- 算法及数据结构系列 - 动态规划
诺亚凹凸曼
算法及数据结构算法数据结构动态规划
系列文章目录算法及数据结构系列-二分查找算法及数据结构系列-BFS算法文章目录框架思路子序列问题解题模板一维dp数组二维dp数组经典题型322.零钱兑换暴力递归带备忘录的暴力递归动态规划300.最长上升子序列1143.最长公共子序列72.编辑距离框架思路动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说求最长递增子序列,最小编辑距离等等。
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =