- GPU编程实战指南03:CUDA开发快速上手示例,GPU性能碾压实测
anda0109
CUDA并行编程linux运维服务器
上一节《GPU编程指南02:CUDA开发快速上手示例》中我们完成了一个使用GPU进行加减乘除四则运算的例子。没有学习的可以先跳转学习这一节,因为它有详细的代码注释,学习完这一篇,你就基本入门了GPU编程。在这个例子中,我们使用GPU进行运算,同时也会用CPU进行运算,然后将两者的结果进行对比,以确保我们代码运行的结果是正确的。既然CPU可以计算,为什么要用GPU呢?因为GPU可以进行并行计算,计算
- DeepSeek R1-32B医疗大模型的完整微调实战分析(全码版)
Allen_LVyingbo
医疗高效编程研发健康医疗人工智能python
DeepSeekR1-32B微调实战指南├──1.环境准备│├──1.1硬件配置││├─全参数微调:4*A10080GB││└─LoRA微调:单卡24GB│├──1.2软件依赖││├─PyTorch2.1.2+CUDA││└─Unsloth/ColossalAI│└──1.3模型加载│├─4bit量化加载│└─FlashAttention2加速├──2.数据集构建│├──2.1数据源││├─CMD
- 记录 | python os添加系统环境变量
极智视界
pythonlinuxos系统环境变量
python中通过os来添加系统环境变量:#设置os系统环境变量os.environ['CUDA_VISIBLE_DEVICES']='0'os.environ['p2c']='1'os.environ['p2o']='0'os.environ['io']='0'#获取os系统环境变量os.getenv('CUDA_VISIBLE_DEVICES')os.getenv('p2c')...
- GPU编程实战指南01:CUDA编程极简手册
anda0109
CUDA并行编程算法
目录1.CUDA基础概念1.1线程层次结构1.2内存层次结构2.CUDA编程核心要素2.1核函数2.2内存管理2.3同步机制3.CUDA优化技巧3.1内存访问优化3.2共享内存使用3.3线程分配优化4.常见问题和解决方案5.实际案例分析1.CUDA基础概念1.1线程层次结构CUDA采用层次化的线程组织结构,从小到大依次为:线程(Thread):最基本的执行单元每个线程执行相同的核函数代码通过thr
- 安装CUDA12.1和torch2.2.1下的DKG
超级无敌大好人
python
1.创建python虚拟环境setNO_PROXY=*condadeactivatecondaenvremove-nfindkgcondacreate-nfindkgpython=3.11condaactivatefindkgcondainstallpackagingsetuptoolspipuninstallnumpycondainstallnumpy=1.24.3请注意,DKG需要python
- win11编译pytorch cuda128版本流程
System_sleep
pytorch人工智能python编译windowscuda
Geforce50xx系显卡最低支持cuda128,torchcu128release版本目前还没有释放,所以自己基于2.6.0源码自己编译wheel包。1.前置条件1.使用visualstudioinstaller安装visualstudio2022,工作负荷选择【使用c++的桌面开发】,安装完成后将“VC\Tools\MSVC\\bin\Hostx64\x64”对应的路径加入环境变量;2.访问
- 【学习笔记5】Linux下cuda、cudnn、pytorch版本对应关系
longii11
linuxpytorch运维
一、cuda和cudnnNVIDIACUDAToolkit(CUDA)为创建高性能GPU加速应用程序提供了一个开发环境。借助CUDA工具包,您可以在GPU加速的嵌入式系统、桌面工作站、企业数据中心、基于云的平台和HPC超级计算机上开发、优化和部署您的应用程序。该工具包包括GPU加速库、调试和优化工具、C/C++编译器以及用于部署应用程序的运行时库。全球的深度学习研究人员和框架开发人员都依赖cuDN
- yolov8训练模型、测试视频
灰灰学姐
深度学习神经网络YOLOpython机器学习
yolov8先训练生成best.pt文件,用这个生成的模型进行视频的测试因为本来用的代码生成的测试视频打不开,格式应该是损坏了,或者部分帧没有正常保存吧。修改了一下代码,现状可以正常打开生成的视频了。1、训练代码train.pyimportos#os.environ["CUDA_VISIBLE_DEVICES"]="3"#同样是选择第3块GPUfromultralyticsimportYOLO#L
- 解决No such file or directory: ‘:/usr/local/cuda:/usr/local/cuda:...‘
北冰洋漂流
环境配置linux服务器运维
【报错】error:[Errno2]Nosuchfileordirectory:':/usr/local/cuda:/usr/local/cuda:/usr/local/cuda:/usr/local/cuda/bin/nvcc'【解决方法】命令行输入命令exportCUDA_HOME=/usr/local/cuda重新运行安装(如pipinstall-v-e.)
- PyTorch 与 NVIDIA GPU 的适配版本及安装
小赖同学啊
人工智能pytorch人工智能python
PyTorch与NVIDIAGPU的适配版本需要通过CUDA和cuDNN来实现。以下是详细的安装教程,包括如何选择合适的PyTorch版本以及如何配置NVIDIAGPU环境。1.检查NVIDIAGPU和驱动1.1检查GPU型号确保你的机器上有NVIDIAGPU,并知道其型号。可以通过以下命令检查:nvidia-smi输出示例:+-----------------------------------
- C++使用Onnxruntime/TensorRT模型推理
奇华智能
AIc++开发语言人工智能AI计算机视觉
onnxruntime和tensorrt是我们常用的两种推理方式,下面整理了两个推理示例,仅供参考。步骤流程模型训练,python下生成pytorch的模型.pth,并基于.pth模型进行推理python下依据模型推理实现从.pth转向.onnxpython下基于.onnx进行推理,与后续两种推理方式种的推理结果进行比较环境windows10+RTX308015GB显存cuda11.3onnxru
- NCU使用指南及模型性能测试(pytorch2.5.1)
Jakari
cudagpuncupythondocker深度学习pytorch
本项目在原项目的基础上增加了NsightCompute(ncu)测试的功能,并对相关脚本功能做了一些健硕性的增强,同时,对一些框架的代码进行了更改(主要是数据集的大小和epoch等),增加模型性能测试的效率,同时完善了模型LSTM的有关功能。OverviewNsightCompute(NCU)是NVIDIA提供的GPU内核级性能分析工具,专注于CUDA程序的优化。它提供详细的计算资源、内存带宽、指
- 高性能计算中如何优化内存管理?
gpu
在高性能计算(HPC)中,优化内存管理是提升计算性能的关键环节之一。以下是一些常见的优化策略和方法:内存分配与管理策略内存池技术:通过预分配一定大小的内存池,避免频繁的内存分配和释放操作,减少内存碎片化。例如,在CUDA编程中,可以使用内存池来管理GPU内存,从而提高内存访问效率。异构内存管理:在异构计算环境中(如CPU+GPU),采用统一内存管理(UnifiedMemory)或智能数据迁移策略,
- 图像识别技术与应用课后总结(12)
一元钱面包
人工智能
全局平均池化(GlobalAveragePooling)1.导入库和设备配置importtorch.nnasnnimporttorch.nn.functionalasFdevice=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")-importtorch.nnasnn:导入PyTorch的神经网络模块,用于构建神经网络层。-imp
- RuntimeError: CUDA error:device.side assert triggered(tensor形状有误)
Gidear
cuda
报错如下:RuntimeError:CUDAerror:device.sideasserttriggeredCUDAkernelerrorsmightbeasynchronouslyreportedatsomeotherAPIcall,sothestacktracebelowmightbeincorrect.后面经过检查发现,是进行计算的时候维度弄错了,下次遇到这个问题可以试着回去检查数据形状是否
- 莫名奇妙的异常009:mysql row size too large>8126
杨友山
异常
表中的varchar和text(longtext)字段太多,超出mysql的默认RowSize8k的限制。一般建议拆表,一个表不要太多列,列的内容不要太长。临时解决可以这样:1.设置mysql全局变量设置命令:SETGLOBALinnodb_file_format='Barracuda';检查命令:showGLOBALVARIABLESLIKE'%file_format%';步骤一一般数据库都有这
- mysql row size too large_mysql 错误 Row size too large (> 8126)解决办法
譃七唯
mysqlrowsizetoolarge
这个错误比较诡异,有很多问题会引发这个错误,主要问题大表中varchar和text(longtext)字段太多,超出mysql的默认RowSize8k的限制。如果涉及的表没有事务和外键的约束,可以把表类型改为MyISAM也可以解决。下面的方法针对表类型为InnoDB的方法。基础设置:innodb_file_per_table=1innodb_file_format=Barracuda如果解决不了,
- 使用pytorch和opencv根据颜色相似性提取图像
深蓝海拓
机器视觉和人工智能学习opencv学习笔记pytorchopencv人工智能
需求:将下图中的花朵提取出来。代码:importcv2importtorchimportnumpyasnpimporttimedefget_similar_colors(image,color_list,threshold):#将图像和颜色列表转换为torch张量device=torch.device('cuda'iftorch.cuda.is_available()else'cpu')image
- 分布式多卡训练(DDP)踩坑
m0_54804970
面试学习路线阿里巴巴分布式
多卡训练最近在跑yolov10版本的RT-DETR,用来进行目标检测。单卡训练语句(正常运行):pythonmain.py多卡训练语句:需要通过torch.distributed.launch来启动,一般是单节点,其中CUDA_VISIBLE_DEVICES设置用的显卡编号,也可以不用,直接在main.py里面指定device也行,–nproc_pre_node每个节点的显卡数量。python-m
- Torch安装必知
m0_52111823
人工智能
从硬件到Torch的支持链条如下Nvidia显卡Nvidia显卡驱动CudaTorchCudnncudnn对torch不是必需,部分项目会依赖cudnn。查看本机显卡版本型号,win+R,输入DxDiag,在显示或呈现栏包含显卡信息查看显卡版本与显卡驱动版本的兼容性,在https://www.nvidia.cn/geforce/drivers/,查看本机显卡支持的显卡驱动,根据搜索结果下载最新的N
- win11编译pytorchvision cuda128版本流程
System_sleep
pytorchpython编译windowscuda
1.前置条件本篇续接自win11编译pytorchcuda128版本流程,阅读前请先参考上一篇配置环境。访问https://kkgithub.com/pytorch/vision/archive/refs/tags/v0.21.0.tar.gz下载源码,下载后解压。2.编译打开MiniforgePrompt,依次执行如下代码:condaactivatetorch_build_envcondains
- 科技快讯 | DeepSeek宣布开源DeepGEMM;多个团队开发AI论文反识别技术;OpenAI GPT 4.5现身Android测试版,即将发布
最新科技快讯
科技
DeepSeek宣布开源DeepGEMM财联社2月26日电,Deepseek于开源周第三天宣布开源DeepGEMM。DeepGEMM是一个专为简洁高效的FP8通用矩阵乘法(GEMM)设计的库,具有细粒度缩放功能,如DeepSeek-V3中所提出。它支持普通和混合专家(MoE)分组的GEMM。该库采用CUDA编写,在安装过程中无需编译,通过使用轻量级的即时编译(JIT)模块在运行时编译所有内核。FP
- 【学习】电脑上有多个GPU,命令行指定GPU进行训练。
超好的小白
学习人工智能深度学习
使用如下指令可以指定使用的GPU。CUDA_VISIBLE_DEVICES=1假设要使用第二个GPU进行训练。CUDA_VISIBLE_DEVICES=1pythontrain.py
- window11和Ubuntu20.04安装Nvidia驱动和CUDA的正确方法
qq_29128985
linuxpython深度学习
零、双系统安装Win11Ubuntu20.04双系统安装解决ubuntu+win11双系统时间不一致问题Ubuntu:系统分区一、安装Nvidia驱动参考:Ubuntu20.04安装NVIDIA显卡驱动、CUDA、CUDNN及突破NVENC并发限制、多版本CUDA切换1、准备工作1)查看显卡型号lspci|grep-invidia2)禁用nouveau并重启(安装Nvidia显卡的官方驱动和系统自
- Anaconda配置tensorflow-gpu教程
rubisco214
tensorflow人工智能python
最近在入门tensorflow深度学习,配置环境吃了不少苦头,写个完整的教程首先得在自己主机上装cuda(我之前就是主机上没装cuda,只在虚拟环境里面装了,结果jupyter里面怎么调都识别不到GPU)打开Nvidia控制面板,左上角帮助-系统信息-组件NVCUDA64.DLL后面的NVIDIACUDA12.1就是你的显卡支持的CUDA版本,去CUDA官网CUDAToolkitArchive|N
- Stable diffusion 3.5本地运行环境配置记录
寸先生的牛马庄园
扩散模型stablediffusion
1.环境配置创建虚环境condacreate-nsd3.5python=3.10Pytorch(>2.0)condainstallpytorch==2.2.2torchvision==0.17.2torchaudio==2.2.2pytorch-cuda=12.1-cpytorch-cnvidiaJupyter能使用Anaconda虚环境condainstallipykernelpython-mi
- 解读CUDA Compiler Driver NVCC - Ch.3
AliceWanderAI
NVCCNVCC
前言上一篇文章简单了介绍了nvcc预定义的宏,以及支持的编译阶段,对应的输入文件后缀和输出文件的默认名。本篇文章了解CUDA源文件编译的整个workflow。OverviewCUDA编译的工作原理如下:输入程序经过设备编译编译预处理,编译为CUDA二进制(cubin)和/或PTX中间代码,被放置在一个fatbinary。输入程序再次预处理以供主机编译,嵌入到fatbinary,并将CUDA特定C+
- NVIDIA CUDA Compiler Driver NVCC
Yongqiang Cheng
NVIDIAGPU-CUDA-cuDNNNVIDIACUDACompilerNVCC
NVIDIACUDACompilerDriverNVCC4.2.8.23.`--list-gpu-code`(`-code-ls`)4.2.8.24.`--list-gpu-arch`(`-arch-ls`)Referenceshttps://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/Thedocumentationfornvcc,theCUDA
- 安装CUDA以及GPU版本的pytorch
lskkkkkkkkkkkk
Pythonpytorch人工智能python
使用pytorch进行深度学习的时候,往往想用GPU进行运算来提高速度。于是搜索便知道了CUDA。下面给出一个自检的建议:检查cuda的版本是否适配自己的GPU。打开NVDIA控制面板,点击左下角“系统信息”,然后就可以看到NVDIAGPU的详细信息,其中就包含了CUDA的版本。在官网安装合适版本的cuda-toolkit。安装了cuda,但是命令行输入nvcc-V报错显示没有nvcc这时候可能没
- 下载cuda11.2+cudnn8.1+tensorflow-gpu2.5
听微雨
深度学习tensorflow人工智能
下载前请先安装显卡驱动,去显卡官网找对应的驱动,英伟达4060就去英伟达官网找4060的驱动。安装cuda11.2和cudnn8.1要注意自己的版本,目前tensorflow-gpu2.5或最高版本tensorflow-gpu2.6只支持cuda11.2和cudnn8.1。同时cuda版本要低于显卡最高支持版本,使用命令行语句查看:nvidia-smi具体安装过程看cuda11.2+cudnn8.
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache