人脸检测级联分类器

对于人脸识别这种类型的应用来说,通常都会分为几个步骤:

  1. 人脸检测(Face Detection)。检测到人脸所在的区域。并进行一系列的矫正。

  2. 人脸校准(Face Alignment)。人脸校准指的是在图片中寻找到鼻子、眼睛、嘴巴之类的位置。

     

    人脸检测级联分类器_第1张图片

    Face Detect & align

     

    如图中,红色的框是在进行检测,白色的点是在进行校准。

  3. 信息识别(Info Recognition)。进行性别、年龄等信息的分析和识别。

这三个问题可以说每一个都是一个非常广泛的研究领域,有很多值得做的工作。本文只做一些简单的介绍。

人脸检测

Viola-Jones方法

传统的人脸检测算法是Viola-Jones算法。在OpenCV中的人脸检测功能也是使用的这种算法。它有三个核心步骤:Haar-like特征、Adaboost分类器和Cascade级联分类器。

Haar-like特征

所谓Haar-like特征其实很好理解。Haar-like特征类似于下图:

人脸检测级联分类器_第2张图片

而所谓的Haar-like的特征值就是图中白色的像素值求和,求和之后与黑色的像素值做差得到的。即

feature=sum(white)-sum(black)

但是在一幅图中这样的特征是非常多的。根据Viola-Jones的论文,一幅24*24的图中这样的Haar-like特征就会达到18万种之多(具体的计算方式我们以后再说)。所以我们可以引入积分图(Integral Image)技术。积分图是一张与原图像大小完全相同的图片,不同之处在于其每一点的像素值是其左上角所有像素值的和。如图

 

人脸检测级联分类器_第3张图片

Integral Image

在这样一幅图中,我们记某一点的像素值为ii(x),则当我们想要计算D区域中所有像素和时,使用ii(4)-ii(2)-ii(3)+ii(1)即可。这就可以大大减少计算时间,提升效率。

Adaboost方法

有了特征,想要得到区分函数是非常容易的。常见的SVM方法和KNN方法都是可以做到的。但尽管本身的计算并不复杂,但Haar特征还是太多了。尤其现在图片分辨率动辄成千上万。从这些特征中选取合适的特征就非常重要。从工程中得到的实践结果是,我们可以通过结合很多个弱分类器从而组合成一个强分类器。这就是Adaboost方法。用数学的方式就可以表示为:

F(x) =Σαf(x)

其中F为强分类器,f为弱分类器。x是特征向量,α为权重。Adaboost是一种序列化的方式,需要经过很多步。举个例子来看。

 

人脸检测级联分类器_第4张图片

Adaboost example

在上图中,每个数据点都有一个类别的标签,不妨设红色为1,绿色为-1。每个数据点也有一个权重wt。初始权重均为1。

我们不妨先随意分一下看看。

人脸检测级联分类器_第5张图片

ada eg2

看上去错误的还挺多的。我们可以经过几次平移选一个相对比较好的。虽然看上去就和乱分差不多。

人脸检测级联分类器_第6张图片

ada eg3

这是只有一个线性划分函数的情况下比较好的结果了,但是仍然有很多错误的结果,我们不妨把它们的权重加大。

人脸检测级联分类器_第7张图片

ada eg4

这个时候就发现了一个新的问题,类似地,我们把现在的权重情况下的数据点进行分类。

人脸检测级联分类器_第8张图片

ada eg5

之后再加大划分错误的点的权重,并再次进行划分。

人脸检测级联分类器_第9张图片

ada eg6

反复数次后就可以在数个线性分类器(或者说弱分类器)的基础上,构造一个非线性的分类器(强分类器)。而且这个分类器还比较好地完成了分类的任务。

 

人脸检测级联分类器_第10张图片

ada 6

渣渣我还做了个gif展示效果。

 

adaboost

Cascade分类器

在VJ方法中的第三个亮点就是使用了级联分类器。简单来说,就是先将几个通过Adaboost方法得到的强分类器进行排序,排序原则是简单的放在前边。因为通常来说人脸只占一小部分,所以可以很放心地在前几层分类器就拒绝掉大部分非人脸区域。只要前一级拒绝了,就不在进入下一级分类器,这可以大大提高速度。其本质是一颗退化决策树。

人脸检测级联分类器_第11张图片

Cascade Classifier

结果

在Viola和Jones的论文中,共建立了38层分类器来检测正面的人脸。使用了4916张人工标记的人脸,并调整到了24*24的分辨率。测试结果如下:

 

人脸检测级联分类器_第12张图片

results

 

人脸检测级联分类器_第13张图片

results-2



 

你可能感兴趣的:(深度学习)