N-Queens II (H)
题目
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return the number of distinct solutions to the n-queens puzzle.
Example:
Input: 4
Output: 2
Explanation: There are two distinct solutions to the 4-queens puzzle as shown below.
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
题意
在 n * n 的棋盘上放置n个皇后,使得每一行、每一列、每一条对角线有且只有一个皇后。统计所有有效的放置方法的个数。
思路
与 51. N-Queens 方法相同,但不需要记录每一种解法,只要求统计个数。
因为不需要记录组合,可以只需要三个数组来对当前位置进行判断:当前列是否被占用,当前左对角线(主对角线方向)是否被占用,当前右对角线(副对角线方向)是否被占用。通过画图寻找规律可得:共有(2n-1)条左对角线,且row-col+n-1相同(加上n-1是为了让值能从0开始)的坐标位于同一左对角线;共有(2n-1)条右对角线,且row+col相同的坐标位于同一右对角线。
代码实现
Java
记录组合
class Solution {
int count = 0;
public int totalNQueens(int n) {
generate(0, new int[n], new boolean[n]);
return count;
}
private void generate(int row, int[] queen, boolean[] occupied) {
if (row == occupied.length) {
count++;
return;
}
for (int col = 0; col < occupied.length; col++) {
if (!occupied[col]) {
boolean isValid = true;
for (int preRow = 0; preRow < row; preRow++) {
if (Math.abs(row - preRow) == Math.abs(queen[preRow] - col)) {
isValid = false;
break;
}
}
if (isValid) {
queen[row] = col;
occupied[col] = true;
generate(row + 1, queen, occupied);
occupied[col] = false;
}
}
}
}
}
不记录组合
class Solution {
int count = 0;
public int totalNQueens(int n) {
generate(0, new boolean[2 * n - 1], new boolean[2 * n - 1], new boolean[n], n);
return count;
}
private void generate(int row, boolean[] diaLeft, boolean[] diaRight, boolean[] colValid, int n) {
if (row == n) {
count++;
return;
}
for (int col = 0; col < n; col++) {
int dl = row - col + n - 1;
int dr = row + col;
if (!colValid[col] && !diaLeft[dl] && !diaRight[dr]) {
colValid[col] = diaLeft[dl] = diaRight[dr] = true;
generate(row + 1, diaLeft, diaRight, colValid, n);
colValid[col] = diaLeft[dl] = diaRight[dr] = false;
}
}
}
}
JavaScript
/**
* @param {number} n
* @return {number}
*/
var totalNQueens = function (n) {
let board = new Array(n).fill(0).map((value, index) => index)
return dfs(board, 0)
}
let dfs = function (board, index) {
if (index === board.length) {
return 1
}
let count = 0
for (let i = index; i < board.length; i++) {
let isValid = true
for (let j = 0; j < index; j++) {
if (index - j === Math.abs(board[j] - board[i])) {
isValid = false
break
}
}
if (isValid) {
[board[index], board[i]] = [board[i], board[index]]
count += dfs(board, index + 1);
[board[index], board[i]] = [board[i], board[index]]
}
}
return count
}