集体智慧和协同过滤

集体智慧和协同过滤

什么是集体智慧


集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验。集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分。

Wikipedia 和 Google 是两个典型的利用集体智慧的 Web 2.0 应用:

Wikipedia 是一个知识管理的百科全书,相对于传统的由领域专家编辑的百科全书,Wikipedia 允许最终用户贡献知识,随着参与人数的增多,Wikipedia 变成了涵盖各个领域的一本无比全面的知识库。也许有人会质疑它的权威性,但如果你从另一个侧面想这个问题,也许就可以迎刃而解。在发行一本书时,作者虽然是权威,但难免还有一些错误,然后通过一版一版的改版,书的内容越来越完善。而在 Wikipedia 上,这种改版和修正被变为每个人都可以做的事情,任何人发现错误或者不完善都可以贡献他们的想法,即便某些信息是错误的,但它一定也会尽快的被其他人纠正过来。从一个宏观的角度看,整个系统在按照一个良性循环的轨迹不断完善,这也正是集体智慧的魅力。

Google:目前最流行的搜索引擎,与 Wikipedia 不同,它没有要求用户显式的贡献,但仔细想想 Google 最核心的 PageRank 的思想,它利用了 Web 页面之间的关系,将多少其他页面链接到当前页面的数目作为衡量当前页面重要与否的标准;如果这不好理解,那么你可以把它想象成一个选举的过程,每个 Web 页面都是一个投票者同时也是一个被投票者,PageRank 通过一定数目的迭代得到一个相对稳定的评分。Google 其实利用了现在 Internet 上所有 Web 页面上链接的集体智慧,找到哪些页面是重要的。


什么是协同过滤

协同过滤是利用集体智慧的一个典型方法。要理解什么是协同过滤 (Collaborative Filtering, 简称 CF),首先想一个简单的问题,如果你现在想看个电影,但你不知道具体看哪部,你会怎么做?大部分的人会问问周围的朋友,看看最近有什么好看的电影推荐,而我们一般更倾向于从口味比较类似的朋友那里得到推荐。这就是协同过滤的核心思想。

协同过滤一般是在海量的用户中发掘出一小部分和你品位比较类似的,在协同过滤中,这些用户成为邻居,然后根据他们喜欢的其他东西组织成一个排序的目录作为推荐给你。当然其中有一个核心的问题:

如何确定一个用户是不是和你有相似的品位?

如何将邻居们的喜好组织成一个排序的目录?

协同过滤相对于集体智慧而言,它从一定程度上保留了个体的特征,就是你的品位偏好,所以它更多可以作为个性化推荐的算法思想。可以想象,这种推荐策略在 Web 2.0 的长尾中是很重要的,将大众流行的东西推荐给长尾中的人怎么可能得到好的效果,这也回到推荐系统的一个核心问题:了解你的用户,然后才能给出更好的推荐。

你可能感兴趣的:(集体智慧和协同过滤)