Elasticsearch SQL用法详解

本文详细介绍了不同版本中Elasticsearch SQL的使用方法,总结了实际中常用的方法和操作,并给出了几个具体例子。

上篇文章回顾:看示例学awk

一、5.x中ES-SQL用法

Elasticsearch 5.x版本中,SQL功能还没有集成到Elasticsearch源码中,需要下载第三方插件后才能使用,配置过程如下: 

1.安装ES-SQL依赖node npm 

ES-SQL 5.x版本以后,安装需要依赖node和npm,先安装node和npm,安装后在检查node及npm的安装,命令如下: 

yum -y install nodejs npm 
node -v  
npm -v

 

2.下载ES-SQL并安装 

然后切换到ES的根目录下,执行如下命令,下载并安ES-SQL插件: 

./bin/elasticsearch-plugin install https://github.com/NLPchina/elasticsearch-sql/releases/download/5.6.3.0/elasticsearch-sql-5.6.3.0.zip

离线包安装可以执行: 

./bin/elasticsearch-plugin install file:/elasticsearch-sql-5.6.3.0.zip

3.重启ES服务 

执行完上述三步,你就可以使用SQL探索数据了,以kibana中的使用为例:

Elasticsearch SQL用法详解_第1张图片

 

二、6.4 Elasticsearch SQL用法

1、Elasticsearch SQL支持的数据类型

首先我们看下Elasticsearch SQL和标准SQL中数据类型的对应关系:

Elasticsearch SQL用法详解_第2张图片

 

2、Elasticsearch SQL的使用方式

Elasticsearch SQL支持三种client: REST Interface, command-line,JDBC

2.1 REST Interface

Elasticsearch SQL用法详解_第3张图片

建议先在kibana中测试(可以一次执行多个SQL),查询通过之后把查询copy到项目中进行测试。

6.3+ Elasticsearch SQL有个非常实用的功能,就是可以用translate api把SQL语句翻译成ES DSL语句,对于学习DSL感到头痛的同学有福啦。

Elasticsearch SQL用法详解_第4张图片

2.2 command-line

命令行界面的进入方式:

./elasticsearch-sql-cli  IP:PORT(本机ip和es的端口)

进入后的界面如下:

命令行一般作为SQL测试时使用。

2.3 JDBC

该组件为X-Pack中的收费组件,感兴趣的同学可以参考官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/sql-jdbc.html

3、常用SQL语句

注意:查询单个索引名一定要用""引上,否则会报错

*查看当前用户所有的索引:“SHOW TABLES;”

Elasticsearch SQL用法详解_第5张图片

精准查询某个索引:“SHOW TABLES LIKE ‘indexname’;”

Elasticsearch SQL用法详解_第6张图片

 

通配符查询某些索引:“SHOW TABLES LIKE ‘ ’;”

Elasticsearch SQL用法详解_第7张图片

Elasticsearch SQL用法详解_第8张图片

Elasticsearch SQL用法详解_第9张图片

*查看某个索引结构:“DESCRIBE table;” 或者 “DESC table;”

Elasticsearch SQL用法详解_第10张图片

上面两个命令都是“SHOW COLUMNS [ FROM | IN ] ? table”命令的别名

Elasticsearch SQL用法详解_第11张图片

*查看函数:“SHOW FUNCTIONS [ LIKE? pattern? ]?” 

精准查询某个函数:

Elasticsearch SQL用法详解_第12张图片

通配符查询某些函数:

Elasticsearch SQL用法详解_第13张图片

Elasticsearch SQL用法详解_第14张图片

查看所有函数:

Elasticsearch SQL用法详解_第15张图片

常用的聚合函数: 

SELECT MIN(value_1) min, MAX(value_1) max, AVG(value_1) avg,SUM(value_1) sum,COUNT(*) count,COUNT(DISTINCT value_1) dictinct_count FROM "micloud_es_sink_zhouyongbo_test-2018.10.19”;

SELECT语句的语法排序如下:

SELECT select_expr [, ...]
[ FROM table_name ]  
[ WHERE condition ] 
[ GROUP BY grouping_element [, ...] ]
[ HAVING condition]
[ ORDER BY expression [ ASC | DESC ] [, ...] ]
[ LIMIT [ count ] ]

*限定返回数据的条数:“limit” 

SELECT * FROM "micloud_es_sink_zhouyongbo_test-2018.10.19” limit 10 ;

注意SQL中的limit比fetch_size中的优先级高,例如下面的例子返回的是5条 :

{ 
  "query": "SELECT * FROM "micloud_es_sink_zhouyongbo_test-2018.10.19” limit 5", 
  "fetch_size":10 
}

*排序:“order by + 字段名字 + asc/desc”

SELECT * FROM "micloud_es_sink_zhouyongbo_test-2018.10.19” ORDER BY value_1 asc/desc;

根据多个字段排序: 

select city c,value_1 + 1 vp from "micloud_es_sink_zhouyongbo_test-2018.10.19" group by c,vp order by c desc,vp asc;

Elasticsearch SQL用法详解_第16张图片

 

*WHERE根据条件查询:

WHERE后面跟ES复杂数据类型: 

SELECT first_name FROM index WHERE first_name.raw = ‘John’  ;

WHERE后面跟多个查询条件: 

SELECT * FROM micloud_es_sink_zhouyongbo_test* where city=‘北京' and value_1=8 ORDER BY value_1 desc ;

*group by分组查询: 

根据单个字段分组查询:

select city,count(city) as count_city,sum(value_1) as count_value_1 from "micloud_es_sink_zhouyongbo_test-2018.10.19" group by city;

Elasticsearch SQL用法详解_第17张图片

 

根据多个字段分组查询: 

select city,count(city) count_city,sum(value_1) count_value_1 from "micloud_es_sink_zhouyongbo_test-2018.10.19" group by city,value_1;

Elasticsearch SQL用法详解_第18张图片

 

对于比较长的字段,也可以对该字段声明别名,并对别名进行分组查询,声明字段别名的“as”可省略: 

select city c,count(city) count_city,sum(value_1) count_value_1 from "micloud_es_sink_zhouyongbo_test-2018.10.19" group by c,value_1;

Elasticsearch SQL用法详解_第19张图片

还可以对某字段进行计算,然后按照计算结果分组查询: 

select city c,value_1 + 1 vp from "micloud_es_sink_zhouyongbo_test-2018.10.19" group by c,vp;

Elasticsearch SQL用法详解_第20张图片

 

*HAVING过滤分组结果(ES-SQL引擎同样会在分组之后计算HAVING语句):

Select city c,count(*) count from "micloud_es_sink_zhouyongbo_test-2018.10.19" group by c having count > 53834;

 

*查询嵌套类型:

select * from zhouyongbo_test04 where love.kaishu=‘鲁公’;

*用通配符查询多个索引:

Elasticsearch SQL用法详解_第21张图片

 

注意被查询索引必须有相同的mapping,否则会有如下报错:

 

常用的方法和操作汇总:

*比较操作: 

Equality (=) 

select * from "micloud_es_sink_zhouyongbo_test-2018.10.19" where value_1 = 6 limit 5;

Inequality (<> or != or <=>) 

select * from "micloud_es_sink_zhouyongbo_test-2018.10.19" where value_1 <> 6 limit 5;

Comparison (<, <=, >, >=) 

select * from "micloud_es_sink_zhouyongbo_test-2018.10.19" where value_1 >= 6 limit 5;

BETWEEN

select * from "micloud_es_sink_zhouyongbo_test-2018.10.19" where value_1 between 6 and 8 limit 5;

IS NULL/IS NOT NULL

select * from "micloud_es_sink_zhouyongbo_test-2018.10.19" where value_1 is not NULL limit 5;

*逻辑操作:

AND

select * from "micloud_es_sink_zhouyongbo_test-2018.10.19" where value_1 > 5 and value_1 < 7 limit 5;

OR

select * from "micloud_es_sink_zhouyongbo_test-2018.10.19" where value_1 = 5 or value_1 = 7 limit 5;

NOT

select * from "micloud_es_sink_zhouyongbo_test-2018.10.19" where not value_1 > 5 limit 5;

*数学运算操作: 

Add (+)

select  1 + 1 as x;

Subtract (infix -) 

select  1 - 1 as x;

Negate (unary -) 

select  - 1 as x;

Multiply (*) 

select  6 * 6 as x;

Divide (/) 

select  30 / 5 as x;

Modulo or Reminder(%) 

select  30 % 7 as x;

*数学函数:(分为通用函数和三角函数两部分 ):

通用函数: 

ABS:求数字的绝对值 

select ABS(value_1) from "micloud_es_sink_zhouyongbo_test-2018.10.19" limit 5;

CBRT:求数字的立方根,返回double

select value_1 v,CBRT(value_1) cbrt from "micloud_es_sink_zhouyongbo_test-2018.10.19" limit 5;

CEIL:返回大于或者等于指定表达式最小整数(double)

select value_1 v,CEIL(value_1) from "micloud_es_sink_zhouyongbo_test-2018.10.19" limit 5;

CEILING:等同于CEIL

select value_1 v,CEILING(value_1) from "micloud_es_sink_zhouyongbo_test-2018.10.19" limit 5;

E:返回自然常数e(2.718281828459045)

select  value_1,E(value_1)  from  "micloud_es_sink_zhouyongbo_test-2018.10.19"  limit  5;

ROUND:四舍五入精确到个位

select ROUND(-3.14);

FLOOR:向下取整

select FLOOR(3.14);

LOG:计算以2为底的自然对数

select LOG(4);

LOG10:计算以10为底的自然对数

select LOG10(100);

SQRT:求一个非负实数的平方根

select  SQRT(9);

EXP:此函数返回e(自然对数的底)的X次方的值

select  EXP(3);

EXPM1:返回e x  -1

select  EXPM1(3);

三角函数:

DEGREES:返回X从弧度转换为度值

select DEGREES(x);

RADIANS:返回X从度转换成弧度的值

select RADIANS(x);

SIN:返回X的正弦

select SIN(x);

COS:返回X,X值是以弧度给出的余弦值

select COS(角度);

TAN:返回参数X,表示以弧度的切线值

select TAN(角度);

ASIN:返回X的反正弦,X的值必须在-1至1范围内,返回NULL

select ASIN(x);

ACOS:返回X的反正弦,X值必须-1到1之间范围否则将返回NULL

select ACOS(x);

ATAN:返回X的反正切

select ATAN(x);

SINH:返回X的双曲正弦值

select SINH(x);

COSH:返回X的双曲余弦值

select COSH(x);

*日期和时间处理相关方法:

YEAR:

SELECT YEAR(CAST('2018-10-23T16:59:27Z' AS TIMESTAMP)) AS year;

MONTH_OF_YEAR() or MONTH():

SELECT MONTH(CAST('2018-10-23T16:59:27Z' AS TIMESTAMP)) AS month;

WEEK_OF_YEAR() or WEEK():

SELECT WEEK(CAST('2018-10-23T16:59:27Z' AS TIMESTAMP)) AS week;

DAY_OF_YEAR() or DOY(),效果等同于EXTRACT( FROM ):

SELECT DOY(CAST('2018-10-23T16:59:27Z' AS TIMESTAMP)) AS day;

DAY_OF_MONTH(), DOM(), or DAY():

SELECT DAY(CAST('2018-10-23T16:59:27Z' AS TIMESTAMP)) AS day;

DAY_OF_WEEK() or DOW():

SELECT DOW(CAST('2018-10-23T16:59:27Z' AS TIMESTAMP)) AS day;

HOUR_OF_DAY() or HOUR():

SELECT HOUR(CAST('2018-10-23T16:59:27Z' AS TIMESTAMP)) AS hour;

MINUTE_OF_DAY():

SELECT MINUTE_OF_DAY(CAST('2018-10-23T16:59:27Z' AS TIMESTAMP)) AS minute;

MINUTE_OF_HOUR() or MINUTE():

SELECT MINUTE(CAST('2018-10-23T16:59:27Z' AS TIMESTAMP)) AS minute;

SECOND_OF_MINUTE() or SECOND():

SELECT SECOND(CAST('2018-10-23T16:59:27Z' AS TIMESTAMP)) AS second;

如上就是6.4 Elasticsearch SQL支持的主要用法了,如果在优化SQL语句之后还不满足查询需求,可以拿SQL和DSL混用,ES会先根据SQL进行查询,然后根据DSL语句对SQL的执行结果进行二次查询,下面是个小例子:

POST /_xpack/sql?format=txt 
{ 
    "query": "SELECT * FROM library ORDER BY page_count DESC", 
    "filter": { 
        "range": { 
            "page_count": { 
                "gte" : 100, 
                "lte" : 200 
            } 
        } 
    }, 
    "fetch_size": 5
}

这个查询就会先根据“query”后面的SQL进行查询,然后用执行“filter”和“fetch_size” DSL语法对查询结果进行过滤,进而返回最终结果。

 

参考文档: 

6.4.0 Elasticsearch SQL新特性简介:

https://www.elastic.co/cn/products/stack/elasticsearch-sql 

6.4.0 Elasticsearch SQL使用文档:

https://www.elastic.co/guide/en/elasticsearch/reference/current/xpack-sql.html

本文首发于公众号“小米运维”,点击查看原文。

你可能感兴趣的:(小米运维)