图像视频相似度算法

背景与原理

前段时间公司项目用到了语音识别,图像识别,视频识别等,其实不能说是识别,应该说是相似度对比吧,毕竟相似度对比还上升不了到识别哈,等以后有了更深的理解再来讨论修改下!这次就当做一个总结吧!

其实它的原理就是一个把需要的特征总结在一个指纹码里面,进行降维成指纹码,假如个指纹码一模一样,那两张图片就想似了.下面有写怎么编译成唯一标识,再用汉明距离计算两个指纹码的相似度.


图像相似度算法:

图片是采用phash算法,一共分为四步吧.

1.将图片缩放到16*16大小,这是我们选择的合适的大小,假如宽高不一样,直接将其压到16*16,去掉细节,只保留宏观;

2.图片一共是16*16的,共256个像素,我们将图片进行灰度化,灰度化就是只有黑白灰三种,从白到黑,一共分了255层;

3.灰度化之后将图片进行DCT转换(离散余弦变化),因为为了识别有的图片旋转,这个DCT转换是将图片进行了一种压缩算法;

4.我们对这个算法进行了优化,因为之前是计算像素的均值,我们为了更准确,我们取RGB,rgb一共分为255个像素,我们将255个像素分为16段,如果像素大于0-16记为0,17到32记为1,直到255,这样就得到255位的二进制,这就是这张图片的指纹码.

得到唯一标识的指纹码之后怎么去计算像素度呢?

通过汉明距离比较两个二进制距离,如果距离小于<10的话,我们就判定两张图片相似.如果两个指纹码(二进制)一模一样,我们就判定两个是一张图片,或者类似;


视频相似度算法:

视频的话我们是通过ffmpeg(ff am pig),它是一个专门处理视频的框架,可以从视频中按针提取图片.然后就按照图片的相似度取对比了...

你可能感兴趣的:(图像视频相似度算法)