- 深度学习笔记——模型部署
好评笔记
深度学习笔记深度学习笔记人工智能transformer模型部署大模型部署大模型
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文简要概括模型部署的知识点,包括步骤和部署方式。文章目录模型部署模型部署的关键步骤常见的模型部署方式优势与挑战总结边缘端部署方案总结历史文章机器学习深度学习模型部署模型部署是指将训练好的机器学习或深度学习模型集成到生产环境中,使其能够在实际应用中处理实时数据和提供预测服务。模型部署的流程涉及模型的封装、部署环境的选择、部
- 探索泰坦尼克号生存分类数据集:机器学习与数据分析的完美起点
岑童嵘
探索泰坦尼克号生存分类数据集:机器学习与数据分析的完美起点【下载地址】泰坦尼克号生存分类数据集本仓库提供了一个经典的机器学习数据集——泰坦尼克号生存分类数据集。该数据集包含两个CSV文件:训练集和测试集。数据集主要用于训练和评估机器学习模型,以预测泰坦尼克号乘客的生存情况项目地址:https://gitcode.com/open-source-toolkit/35561项目介绍泰坦尼克号生存分类数
- 李开复与零一万物:AI创业的务实之道,以及AI写代码工具的崛起
前端
2025年伊始,AI领域便掀起一阵波澜。零一万物,这家备受瞩目的AI公司,其人员变动和业务拆分引发了广泛关注。李开复,这位在AI领域深耕多年的资深人士,对此做出了回应,其核心观点值得我们深思:在AI领域,盲目追求规模并非最佳策略。这不仅关乎零一万物,也为众多AI初创公司提供了宝贵的经验。李开复观点解读:理性决策,而非盲目扩张李开复认为,初创公司“负担不起”超大模型的预训练。这“负担不起”并非仅仅指
- Python中的Pipeline快速教学、
Coding Is Fun
python开发语言
在Python中,Pipeline通常指的是机器学习工作流中的流水线,尤其是在使用scikit-learn库时。Pipeline允许你将多个数据处理步骤和模型训练步骤串联起来,形成一个有序的工作流程。这不仅使代码更简洁,还能确保在训练和预测时一致的数据处理。以下是一个快速教学,帮助你掌握Python中Pipeline的核心概念和使用方法。目录安装和导入必要的库Pipeline的基本概念创建一个简单
- 大模型介绍
詹姆斯爱研究Java
spring
大模型(LargeModel)指的是拥有庞大参数量的机器学习模型。由于具有更多的参数,大模型能够更好地拟合复杂的数据和模式,从而提供更准确的预测和更好的性能。大模型的参数量通常远远超过常规模型,可以达到数百万甚至数十亿个参数。这些参数通常通过深度神经网络(DeepNeuralNetwork)来表示,包括多个隐藏层和大量的神经元。大模型的训练需要大量的计算资源和数据。通常,它们需要在多个GPU或TP
- 基于深度学习的极端天气预测全解析与实战指南:基于MetNet 模型
AI_DL_CODE
深度学习人工智能MetNet天气预测python
摘要:本文全面解析了基于深度学习的极端天气预测,重点介绍了MetNet模型。首先,文章阐述了极端天气预测的重要性和传统天气预报的局限性。接着,详细介绍了MetNet模型的基本架构、特点以及与其他气象预测模型的对比。然后,通过实战案例展示了MetNet模型在极端降雨天气预测中的应用,包括数据准备、模型搭建与训练、模型评估与预测。最后,文章总结了MetNet模型的优势与挑战,并展望了深度学习在气象领域
- 后端学习1.4: Mybatis-plus配置多租户
Congee_porridge
后端开发学习mybatisjavaspringboot后端
功能要求Mybatis-plus配置多租户。从header中的token获取租户信息;所有userController的数据库操作*不要*配置多租户,所有工作计划相关的数据库操作*需要*配置多租户,达成数据隔离。开发工具:IDEA技术:Springboot+MabtisPlus+Postman1、什么是多租户?多租户技术(多重租赁技术,简称saas),是一种软件架构技术;可以实现同一套程序下用户数
- 使用 PyTorch 从头开始构建您自己的 Llama 3 架构
子然在打码
pytorchllama人工智能
https://www.aisolink.com/build-your-own-llama-3-architecture-from-scratch-using-pytorch全文摘要本文提供了一个详细的指南,介绍如何使用PyTorch从头开始构建Llama3模型的完整架构,并对自定义数据集进行训练和推理。文章涵盖了构建输入块、解码器块和输出块的步骤,并提供了相应的代码示例。最终目标是构建一个功能齐
- 大模型的RAG微调与Agent:提升智能代理的效率与效果
WeeJot
人工智能人工智能
目录编辑引言RAG模型概述检索阶段生成阶段RAG模型的微调数据集选择损失函数设计微调策略超参数调整RAG模型在智能代理中的应用客户服务信息检索内容创作决策支持:结论引言在人工智能的快速发展中,大型预训练模型(LLMs)已经成为推动技术进步的关键力量。这些模型通过在海量数据上的预训练,掌握了丰富的语言知识和模式识别能力,从而在多种自然语言处理任务上展现出卓越的性能。然而,预训练模型的通用性也意味着它
- YOLOv8改进,YOLOv8检测头融合DiverseBranchBlock,并添加小目标检测层(四头检测),适合目标检测、分割等
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉深度学习
摘要一种卷积神经网络(ConvNet)的通用构建模块,以在不增加推理时间成本的情况下提高性能。该模块被命名为多样分支块(DiverseBranchBlock,DBB),通过结合不同尺度和复杂度的多样分支来丰富特征空间,包括卷积序列、多尺度卷积和平均池化,从而增强单个卷积的表示能力。在训练后,DBB可以等效地转换为一个单独的卷积层以进行部署。与新型ConvNet架构的进步不同,DBB在保持宏观架构的
- YOLOv10改进,YOLOv10改进主干网络为GhostNetV3(2024年华为的轻量化架构,全网首发),助力涨点
挂科边缘
YOLOv10改进YOLO计算机视觉目标检测人工智能python深度学习
摘要GhostNetV3是由华为诺亚方舟实验室的团队发布的,于2024年4月发布。摘要:紧凑型神经网络专为边缘设备上的应用设计,具备更快的推理速度,但性能相对适中。然而,紧凑型模型的训练策略目前借鉴自传统模型,这忽略了它们在模型容量上的差异,可能阻碍紧凑型模型的性能提升。在本文中,通过系统地研究不同训练成分的影响,我们介绍了一种用于紧凑型模型的强大训练策略。我们发现,适当的重参数化和知识蒸馏设计对
- 企业落地大模型的路径选择:微调、RAG、提示词工程
AGI-杠哥
深度学习自然语言处理人工智能学习知识图谱
一、大模型的特点1)不确定性与传统应用不同,模型的输出是不确定的,即使多次问它一样的问题,给出的结果也可能不一样。这种特性对于日常应用业务OK,但是如果要在企业内用来处理具体业务问题,就必须提高这个稳定性,否则影响生产经营,例如产线操作人员通过模型获取操作步骤或者参数,如果步骤或者数据不对可能会导致产品出现质量问题等等。2)静态性模型一旦训练好,就无法再补充数据,因此模型不会了解你自己组织内部的年
- ChatGPT 绘图的工作原理
ChatGPT的绘图功能结合了自然语言处理(NLP)和图像生成的技术,这种综合能力依赖于预训练模型(如GPT-4)和图像生成模型(如DALL-E)之间的紧密协作。ChatGPT本质上是一个大规模的语言模型,但通过与图像生成模型集成,它得以执行基于描述生成图像的任务。接下来,我们将从模型架构、训练方法、推理机制和一些技术挑战等方面,详细讨论ChatGPT进行绘图的工作原理。
- OpenVoiceV2:零样本跨语言语音克隆技术,支持多种风格控制
智慧医疗
AIGC语音识别人工智能语音克隆
1openvoicev2介绍语音克隆技术近年来取得了显著进展,但现有方法通常存在着局限性,例如无法灵活控制语音风格、需要大量多语言数据进行训练、生成速度慢等等。为了克服这些挑战,MyShell.ai团队推出了全新的语音克隆技术OpenVoiceV2,它能够在无需额外训练的情况下,仅凭少量参考音频,就能够克隆任何人的声音,并支持多种语音风格控制,以及快速高效的跨语言语音生成。论文地址:http://
- 在PyTorch框架上训练ImageNet时,Dataloader加载速度慢怎么解决?
cda2024
pytorch人工智能python
在深度学习领域,PyTorch因其灵活性和易用性而受到广泛欢迎。然而,在实际应用中,特别是在处理大规模数据集如ImageNet时,Dataloader的加载速度往往成为瓶颈。本文将深入探讨这一问题,并提供多种解决方案,帮助你在PyTorch框架上高效地训练ImageNet。1.问题背景ImageNet是一个包含超过1400万张图像的大规模数据集,被广泛用于图像分类任务的研究。在PyTorch中,D
- wandb 网络连接问题解决指南
星之所望
wandb
背景我们都知道wandb是非常好用的可视化工具,但是国内这个环境,网络不通畅,使用时常常会无法同步数据,在使用校园网的情况下尤为明显。这里提供了一种解决思路。环境windows10pycharm校园网wifi报错内容运行训练代码时出现以下错误wandb:Networkerror(TransientError),enteringretryloop.解决办法需要挂代理,这里用的是clashforwin
- MCP(Model Context Protocol)模型上下文协议 进阶篇4 - 发展计划
AIQL
MCP(ModelContextProtocol)MCPailanguagemodel开源协议人工智能
ModelContextProtocol(MCP)正在快速发展。这一章概述了2025年上半年关键优先事项和未来方向的当前思考,尽管这些内容可能会随着项目的进展而发生显著变化。目前MCP的主要内容,除实战篇外(包括理论篇、番外篇和进阶篇)均已进入收尾阶段。在官方未发布重大更新前,预计短期不会新增其他篇章。远程MCP支持(RemoteMCPSupport)我们的首要任务是启用远程MCP连接,允许客户端
- 自适应神经网络架构:原理解析与代码示例
chian-ocean
机器学习神经网络人工智能深度学习
个人主页:chian-ocean文章专栏自适应神经网络结构:深入探讨与代码实现1.引言随着深度学习的不断发展,传统神经网络模型在处理复杂任务时的局限性逐渐显现。固定的网络结构和参数对于动态变化的环境和多样化的数据往往难以适应,导致了过拟合或欠拟合的问题。自适应神经网络(AdaptiveNeuralNetworks,ANN)为此提供了一种新的解决方案,它可以根据数据特征和训练情况自动调整网络结构,从
- 【AI论文】迈向大型推理模型:大型语言模型增强推理综述
东临碣石82
人工智能语言模型自然语言处理
摘要:语言长久以来被视为人类推理不可或缺的工具。大型语言模型(LLM)的突破激发了利用这些模型解决复杂推理任务的浓厚研究兴趣。研究人员已经超越了简单的自回归词元生成,引入了“思维”的概念——即代表推理过程中间步骤的词元序列。这一创新范式使LLM能够模仿复杂的人类推理过程,如树搜索和反思性思维。近期,一种新兴的学习推理趋势采用强化学习(RL)来训练LLM掌握推理过程。这种方法通过试错搜索算法自动生成
- 代码随想录训练营第三十八天| 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结篇
chengooooooo
算法
322.零钱兑换题目链接:322.零钱兑换-力扣(LeetCode)讲解链接:代码随想录和昨天做过的零钱对换不太一样昨天的零钱兑换是完全背包里的球排列问题这个是求在指定的背包容量内求最小的组合数动态规划五部曲1定义dp方程我们假设用了dp[j]个硬币去凑j容量的背包要求dp[j]最小2推导递推公式首先最少用j-coins[i]个硬币来凑dp[j-coins[i]]容量的金额(背包)(不加上他本身的
- AscendC从入门到精通系列(四)使用Pybind调用AscendC算子
人工智能深度学习
如果已经通过AscendC编程语言实现了算子,那该如何通过pybind进行调用呢?1Pybind调用介绍通过PyTorch框架进行模型的训练、推理时,会调用很多算子进行计算,其中的调用方式与kernel编译流程有关。对于自定义算子工程,需要使用PyTorchAscendAdapter中的OP-Plugin算子插件对功能进行扩展,让torch可以直接调用自定义算子包中的算子,详细内容可以参考PyTo
- ATB是什么?
人工智能深度学习
1ATB介绍AscendTransformerBoost加速库(下文简称为ATB加速库)是一款高效、可靠的加速库,基于华为AscendAI处理器,专门为Transformer类模型的训练和推理而设计。ATB加速库采用了一系列优化策略,包括算法优化、硬件优化和软件优化,能够显著提升Transformer模型的训练和推理速度,同时降低能耗和成本。具体来说,ATB加速库通过优化矩阵乘法等核心算子和注意力
- 2025 年 JeecgBoot AI 低代码平台白皮书
引言随着人工智能技术的快速发展和数字化转型的深入推进,企业对AI应用的需求日益旺盛。然而,传统AI开发模式存在技术门槛高、开发周期长、成本高昂等问题,难以满足企业快速迭代和敏捷开发的需求。JeecgBoot作为一款优秀的开源低代码开发平台,拥有庞大的用户群体和丰富的功能模块。为了顺应技术发展趋势,满足用户需求,JeecgBoot计划向AI低代码平台转型,打造一款集低代码开发和AI能力于一体的新一代
- 多模态视觉语言模型
funNLPer
计算机视觉语言模型人工智能自然语言处理多模态
文章目录1.多模态大模型概述1.1模型范式1.2训练范式2.BLIP3.BLIP24.LLaVa&LLaVA1.55.QwenVL5.1模型结构5.2训练过程6.参考1.多模态大模型概述1.1模型范式1)模态编码器:模态编码器主要是对来自不同模态的输入进行编码,来获得相应的特征,如视觉方面用ViT,CLIPVIT;音频模态用C-Former,Whisper等进行编码;2)输入Projector:输
- MES(制造执行系统)中物料管理的业务流程
洗发水很好用
mes
MES(制造执行系统)中物料管理的业务流程,围绕物料从采购到投入生产及剩余物料处理的全生命周期展开,旨在保障生产的物料供应,同时优化库存、降低成本。物料需求规划生产计划对接:MES系统与企业的生产计划系统(如ERP系统中的生产计划模块)进行数据交互。生产计划明确了产品的生产数量、时间安排等信息,MES系统据此分解生成物料需求清单。例如,一家汽车制造企业计划下个月生产1000辆某型号汽车,MES系统
- Flex.1-Alpha - 可进行适当微调的新修改通量模型。
吴脑的键客
AI作画人工智能AIGC
“Flex.1以FLUX.1-schnell-training-adapter开始,目的是在FLUX.1-schnell上训练LoRA。最初的目标是训练一个可以在训练过程中激活的LoRA,以便对步长压缩模型进行微调。我将这个适配器并入了FLUX.1-schnell,并继续在FLUX.1-schnell模型生成的图像上训练它,以进一步分解压缩,同时不注入任何新数据,目的是制作一个独立的基础模型。这就
- yoloV8训练标注数据生成模型
安陆米香
目标检测计算机视觉YOLO目标检测计算机视觉
1、标注工具:vott2、yoloV82.1仓库地址https://github.com/ultralytics/ultralytics2.2参考教程文档文档地址:https://github.com/ultralytics/ultralytics/wiki3、数据集|标注数据格式3.1数据集格式【coco128】3.1.1下载地址:https://cocodataset.org/#downloa
- 从计划到执行:销售团队协同的最佳实践
产品经理
在销售管理中,团队协同效率一直是困扰管理者的核心问题。随着数字化工具的普及,越来越多的销售团队开始借助协同平台来提升内部效率。然而,在实际运用中,许多企业发现仅仅依赖工具并不能完全解决问题,关键还在于对流程的优化和资源的整合。销售流程中的三大痛点1.信息孤岛销售团队经常面临数据分散、信息割裂的问题。客户信息、销售计划、跟进记录分别存储在不同平台,导致查找费时费力。2.沟通效率低下跨部门沟通和内部信
- jmeter录制 过滤_Jmeter录制pc脚本
weixin_39757040
jmeter录制过滤
1.打开jmeter后可以看到左边窗口有个“测试计划”和“工作台”,右键“测试计划”,添加Threads(Users)→线程组,再右键线程组→添加配置元件→Http请求默认值Http请求默认值窗口下---在web服务器处的“服务器名称或IP”填上网址或IP(本地就填localhost的IP,端口填你部署的服务器端口,路径就填写域名后面的路径。2.可以有可以无。[作用:清楚所有录制的记录信息]3.右
- leetcode 2545.根据第K场考试的分数排序
付宇轩
leetcode算法
1.题目要求:班里有m位学生,共计划组织n场考试。给你一个下标从0开始、大小为mxn的整数矩阵score,其中每一行对应一位学生,而score[i][j]表示第i位学生在第j场考试取得的分数。矩阵score包含的整数互不相同。另给你一个整数k。请你按第k场考试分数从高到低完成对这些学生(矩阵中的行)的排序。返回排序后的矩阵。示例1:输入:score=[[10,6,9,1],[7,5,11,2],[
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象