labelme 批量转换 json 文件脚本

ubuntu下运行该脚本批量转换
windows下没试过,可能需要把第二十六行和第二十七行代码改成

os.system('dir 文件夹路径\*.json /b/s > json_list.txt')

import argparse
import base64
import json
import os
import os.path
import warnings
import PIL.Image
import yaml
from labelme.logger import logger
from labelme import utils


#labelme .json文件批量转换脚本
#参数 -o 或者 --out:输出文件的位置,不带参数则默认存放在json文件同目录下


def check_dir(dir):
    '''检查文件夹是否存在,不存在则创建文件夹'''
    if not os.path.exists(dir):
        os.makedirs(dir)


def main():
    '''获取json文件列表'''
    # pathdir = os.getcwd()
    pathdir = './'
    os.system('find %s -name *.json > json_list.txt' % pathdir)
    with open('./json_list.txt', 'r') as json_file:
        json_list = json_file.readlines()

    '''转换文件'''
    temp = 0
    for file_name in json_list:
        file_name = file_name.strip('\n')
        print(file_name)

        logger.warning('This script is aimed to demonstrate how to convert the'
                       'JSON file to a single image dataset, and not to handle'
                       'multiple JSON files to generate a real-use dataset.')
        
        parser = argparse.ArgumentParser()
        parser.add_argument('-o', '--out', default=None)
        args = parser.parse_args()

        json_file = file_name
        
        if args.out is None:
            out_dir = os.path.basename(json_file).replace('.', '_')
            out_dir = os.path.join(os.path.dirname(json_file), out_dir)
        else:
            out_dir = args.out
        check_dir(out_dir)

        data = json.load(open(json_file))
        imageData = data.get('imageData')

        if not imageData:
            imagePath = os.path.join(os.path.dirname(json_file), data['imagePath'])
            with open(imagePath, 'rb') as f:
                imageData = f.read()
                imageData = base64.b64encode(imageData).decode('utf-8')
        img = utils.img_b64_to_arr(imageData)

        label_name_to_value = {'_background_': 0}
        for shape in sorted(data['shapes'], key=lambda x: x['label']):
            label_name = shape['label']
            if label_name in label_name_to_value:
                label_value = label_name_to_value[label_name]
            else:
                label_value = len(label_name_to_value)
                label_name_to_value[label_name] = label_value
        lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

        label_names = [None] * (max(label_name_to_value.values()) + 1)
        for name, value in label_name_to_value.items():
            label_names[value] = name
        lbl_viz = utils.draw_label(lbl, img, label_names)

        # 保存文件
        PIL.Image.fromarray(img).save(os.path.join(out_dir, 'img%s.png' % temp))
        utils.lblsave(os.path.join(out_dir, 'label%s.png' % temp), lbl)
        PIL.Image.fromarray(lbl_viz).save(os.path.join(out_dir, 'label_viz%s.png' % temp))

        with open(os.path.join(out_dir, 'label_names%s.txt' % temp), 'w') as f:
            for lbl_name in label_names:
                f.write(lbl_name + '\n')

        logger.warning('info.yaml is being replaced by label_names%s.txt' % temp)
        info = dict(label_names=label_names)
        with open(os.path.join(out_dir, 'info%s.yaml' % temp), 'w') as f:
            yaml.safe_dump(info, f, default_flow_style=False)

        logger.info('Saved to: {} {}'.format(out_dir, temp))
        temp += 1


if __name__ == '__main__':
    main()

你可能感兴趣的:(计算机视觉,Linux)