Batch Normalization

Batch Normalization 会使你的参数搜索问题变得很容易,使神经网络对超参数的选择更加稳定,超参数的范围会更加庞大,工作效果也很好,也会使你的训练更加容易,甚至是深层网络。

当训练一个模型,比如logistic回归时,你也许会记得,归一化输入特征可以加快学习过程。你计算了平均值,从训练集中减去平均值,计算了方差,接着根据方差归一化你的数据集,在之前的视频中我们看到,这是如何把学习问题的轮廓,从很长的东西,变成更圆的东西,更易于算法优化。所以对logistic回归和神经网络的归一化输入特征值而言这是有效的。
那么更深的模型呢?你不仅输入了特征值x,而且这层有激活值a[1],这层有激活值a[2]等等。如果你想训练这些参数,比如w[3],b[3],那归一化a[2]的平均值和方差岂不是很好?以便使w[3],b[3]的训练更有效率。
在神经网络中,已知一些中间值,假设你有一些隐藏单元值,从Z(1)到Z(m),这些来源于隐藏层,所以这样写会更准确,即z为隐藏层,i从 1到m。

Batch Normalization_第1张图片

Batch Normalization_第2张图片

在这里,我们分别介绍和使用来自tf.layers高级 封装函数tf.layers.batch_normalization和低级的tf.nn中的tf.nn.batch_normalization

怎么加入batch normalization

我们又分为两种情况讨论:

  • 全连接层
  • 卷积层

使用tf.layers.batch_normalization

首先讨论全连接层,分为4个步骤:

  • 加入 is_training 参数
  • 从全连接层中移除激活函数和bias
  • 使用tf.layers.batch_normalization函数 归一化层的输出
    -传递归一化后的值给激活函数
def fully_connected(prev_layer, num_units, is_training):
    """
    Create a fully connectd layer with the given layer as input and the given number of neurons.
    
    :param prev_layer: Tensor
        The Tensor that acts as input into this layer
    :param num_units: int
        The size of the layer. That is, the number of units, nodes, or neurons.
    :param is_training: bool or Tensor
        Indicates whether or not the network is currently training, which tells the batch normalization
        layer whether or not it should update or use its population statistics.
    :returns Tensor
        A new fully connected layer
    """
    layer = tf.layers.dense(prev_layer, num_units, use_bias=False, activation=None)
    layer = tf.layers.batch_normalization(layer, training=is_training)
    layer = tf.nn.relu(layer)
    return layer

然后是卷积层加入batch normalization

  • 加入 is_training 参数
  • 从全连接层中移除激活函数和bias
  • 使用tf.layers.batch_normalization函数 归一化层的输出
  • 传递归一化后的值给激活函数

比较两者的区别,当你使用tf.layers时,对全连接层和卷积层时基本没有区别,使用tf.nn的时候,会有一些不同 。
一般来说,人们同意消除层的bias(因为批处理已经有了扩展和转换),并在层的非线性激活函数之前添加batch normalization。然而,对一些网络来说,使用其他方式也能很好工作。

在train方面,需要修改:

  • 添加is_training ,一个占位符储存布尔量,表示网络是否在训练。
  • 传递is_training给卷积层和全连接层
  • 每次调用session.run(),都要给feed_dict传递合适的值
  • 将train_opt放入tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):

使用tf.nn.batch_normalization

  • 加入 is_training 参数
  • 去除bias 以及激活函数
  • 添加 gamma,beta,pop_mean,pop_variance变量
  • 使用 tf.cond处理训练与测试的不同
  • tf.nn.moments计算均值和方差。with tf.control_dependencies... 更新population statistics,tf.nn.batch_normalization 归一化层的输出
  • 在测试时,用tf.nn.batch_normalization归一化层的输出,使用训练时候的population statistics
    -加入激活函数
def fully_connected(prev_layer, num_units, is_training):
    """
    Create a fully connectd layer with the given layer as input and the given number of neurons.
    
    :param prev_layer: Tensor
        The Tensor that acts as input into this layer
    :param num_units: int
        The size of the layer. That is, the number of units, nodes, or neurons.
    :param is_training: bool or Tensor
        Indicates whether or not the network is currently training, which tells the batch normalization
        layer whether or not it should update or use its population statistics.
    :returns Tensor
        A new fully connected layer
    """

    layer = tf.layers.dense(prev_layer, num_units, use_bias=False, activation=None)

    gamma = tf.Variable(tf.ones([num_units]))
    beta = tf.Variable(tf.zeros([num_units]))

    pop_mean = tf.Variable(tf.zeros([num_units]), trainable=False)
    pop_variance = tf.Variable(tf.ones([num_units]), trainable=False)

    epsilon = 1e-3
    
    def batch_norm_training():
        batch_mean, batch_variance = tf.nn.moments(layer, [0])

        decay = 0.99
        train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay))
        train_variance = tf.assign(pop_variance, pop_variance * decay + batch_variance * (1 - decay))

        with tf.control_dependencies([train_mean, train_variance]):
            return tf.nn.batch_normalization(layer, batch_mean, batch_variance, beta, gamma, epsilon)
 
    def batch_norm_inference():
        return tf.nn.batch_normalization(layer, pop_mean, pop_variance, beta, gamma, epsilon)

    batch_normalized_output = tf.cond(is_training, batch_norm_training, batch_norm_inference)
    return tf.nn.relu(batch_normalized_output)
def conv_layer(prev_layer, layer_depth, is_training):
    """
    Create a convolutional layer with the given layer as input.
    
    :param prev_layer: Tensor
        The Tensor that acts as input into this layer
    :param layer_depth: int
        We'll set the strides and number of feature maps based on the layer's depth in the network.
        This is *not* a good way to make a CNN, but it helps us create this example with very little code.
    :param is_training: bool or Tensor
        Indicates whether or not the network is currently training, which tells the batch normalization
        layer whether or not it should update or use its population statistics.
    :returns Tensor
        A new convolutional layer
    """
    strides = 2 if layer_depth % 3 == 0 else 1
    
    in_channels = prev_layer.get_shape().as_list()[3]
    out_channels = layer_depth*4
    
    weights = tf.Variable(
        tf.truncated_normal([3, 3, in_channels, out_channels], stddev=0.05))
    
    layer = tf.nn.conv2d(prev_layer, weights, strides=[1,strides, strides, 1], padding='SAME')

    gamma = tf.Variable(tf.ones([out_channels]))
    beta = tf.Variable(tf.zeros([out_channels]))

    pop_mean = tf.Variable(tf.zeros([out_channels]), trainable=False)
    pop_variance = tf.Variable(tf.ones([out_channels]), trainable=False)

    epsilon = 1e-3
    
    def batch_norm_training():
        # Important to use the correct dimensions here to ensure the mean and variance are calculated 
        # per feature map instead of for the entire layer
        batch_mean, batch_variance = tf.nn.moments(layer, [0,1,2], keep_dims=False)

        decay = 0.99
        train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay))
        train_variance = tf.assign(pop_variance, pop_variance * decay + batch_variance * (1 - decay))

        with tf.control_dependencies([train_mean, train_variance]):
            return tf.nn.batch_normalization(layer, batch_mean, batch_variance, beta, gamma, epsilon)
 
    def batch_norm_inference():
        return tf.nn.batch_normalization(layer, pop_mean, pop_variance, beta, gamma, epsilon)

    batch_normalized_output = tf.cond(is_training, batch_norm_training, batch_norm_inference)
    return tf.nn.relu(batch_normalized_output)

我们不用添加with tf.control_dependencies... ,因为我们手动更新 了populayions statistics 在全连接层 和卷积层

def train(num_batches, batch_size, learning_rate):
    # Build placeholders for the input samples and labels 
    inputs = tf.placeholder(tf.float32, [None, 28, 28, 1])
    labels = tf.placeholder(tf.float32, [None, 10])

    # Add placeholder to indicate whether or not we're training the model
    is_training = tf.placeholder(tf.bool)

    # Feed the inputs into a series of 20 convolutional layers 
    layer = inputs
    for layer_i in range(1, 20):
        layer = conv_layer(layer, layer_i, is_training)

    # Flatten the output from the convolutional layers 
    orig_shape = layer.get_shape().as_list()
    layer = tf.reshape(layer, shape=[-1, orig_shape[1] * orig_shape[2] * orig_shape[3]])

    # Add one fully connected layer
    layer = fully_connected(layer, 100, is_training)

    # Create the output layer with 1 node for each 
    logits = tf.layers.dense(layer, 10)
    
    # Define loss and training operations
    model_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels))
    train_opt = tf.train.AdamOptimizer(learning_rate).minimize(model_loss)
    
    # Create operations to test accuracy
    correct_prediction = tf.equal(tf.argmax(logits,1), tf.argmax(labels,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    # Train and test the network
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for batch_i in range(num_batches):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)

            # train this batch
            sess.run(train_opt, {inputs: batch_xs, labels: batch_ys, is_training: True})
            
            # Periodically check the validation or training loss and accuracy
            if batch_i % 100 == 0:
                loss, acc = sess.run([model_loss, accuracy], {inputs: mnist.validation.images,
                                                              labels: mnist.validation.labels,
                                                              is_training: False})
                print('Batch: {:>2}: Validation loss: {:>3.5f}, Validation accuracy: {:>3.5f}'.format(batch_i, loss, acc))
            elif batch_i % 25 == 0:
                loss, acc = sess.run([model_loss, accuracy], {inputs: batch_xs, labels: batch_ys, is_training: False})
                print('Batch: {:>2}: Training loss: {:>3.5f}, Training accuracy: {:>3.5f}'.format(batch_i, loss, acc))

        # At the end, score the final accuracy for both the validation and test sets
        acc = sess.run(accuracy, {inputs: mnist.validation.images,
                                  labels: mnist.validation.labels, 
                                  is_training: False})
        print('Final validation accuracy: {:>3.5f}'.format(acc))
        acc = sess.run(accuracy, {inputs: mnist.test.images,
                                  labels: mnist.test.labels,
                                  is_training: False})
        print('Final test accuracy: {:>3.5f}'.format(acc))
        
        # Score the first 100 test images individually, just to make sure batch normalization really worked
        correct = 0
        for i in range(100):
            correct += sess.run(accuracy,feed_dict={inputs: [mnist.test.images[i]],
                                                    labels: [mnist.test.labels[i]],
                                                    is_training: False})

        print("Accuracy on 100 samples:", correct/100)


num_batches = 800
batch_size = 64
learning_rate = 0.002

tf.reset_default_graph()
with tf.Graph().as_default():
    train(num_batches, batch_size, learning_rate)

你可能感兴趣的:(Batch Normalization)