Paper reading :Hierarchical Saliency Detection

Overview of hierachical framework-2013

Paper reading :Hierarchical Saliency Detection_第1张图片


Image Layer Extraction

—————coarse representation of the input with different degrees of details

1. define scale of region R

这里写图片描述

Paper reading :Hierarchical Saliency Detection_第2张图片

2. Efficient Algorithm to Compute Region Scale

避免穷举法计算带来的时间代价,采用box filter with t x t kernel to the segment and cheking if all pixel values inside the segment are changed during filtering.

Paper reading :Hierarchical Saliency Detection_第3张图片

3. Layer Generation

First, over segmentation : by the watershed like method. For each segmented region, we compute a scale value

Paper reading :Hierarchical Saliency Detection_第4张图片

Single-Layer Saliency Cues

———————saliency cues are applied to find important pixels from the perspectives of color, position and size

1. Local contrast

Paper reading :Hierarchical Saliency Detection_第5张图片

ci and cj are colors of regions Ri and Rj respectively. ( Lab color space)

w(Rj) : the number of pixels in Rj.

φ(i, j): is set to exp{−D(Ri, Rj)/σ2}, Parameter σ2 is set to the product of (0.2)2 and the particular scale threshold for the current layer.

2. Location heuristic——pixels close to a natural image center could be salient in many cases

Paper reading :Hierarchical Saliency Detection_第6张图片

where {x0, x1 · · · } is the set of pixel coordinates in region Ri;

λ is set to 9 in general (控制);

xc is the coordinate of the image center

local contrast and location cues normalized to range [0,1)

3. Initial saliency value

这里写图片描述

initial saliency cue maps in three layers

Paper reading :Hierarchical Saliency Detection_第7张图片


Hierarchical Inference——in 2013

  • 多层融合时不采用简单的加权,而是用分层推导的方法得出能量方程,最后采用置信传播算法最小化能量方程。

  • For a node corresponding to region i in layer Ll, we define a saliency variable sli.

  • minimize the following energy function:

这里写图片描述

  • Data term ED(sli) is to gather separate saliency confidence.

    这里写图片描述

    • βl controls the layer confidence

    这里写图片描述

  • Hierarchy term ES(sli,sl+1j) enforce consistency between corresponding regions in different layers.

    (notice: Rli and Rl+1j are corresponding in two layers, we have Rli ⊆ Rl+1j)

    这里写图片描述

    Finally, minimize Eq.(5) by belief propagation.

Overview of hierachical framework-2013

Paper reading :Hierarchical Saliency Detection_第8张图片

  • 对比 :

  • 13年:对于L层i节点显著性值考虑与初始显著性值差距最小化,同时与L+1层对应父节点显著性值差异最小化;

  • 15年:在13年的基础上,加上一条规则:对于L层i节点考虑与L层相邻的所有节点 j 依据相似性缩小差距(相似度大,差距越小),用来平滑相似的相邻区间的显著性值

  • 效果上的前后对比:
    Paper reading :Hierarchical Saliency Detection_第9张图片


Hierarchical Inference——in 2015

  • new energy function :

Paper reading :Hierarchical Saliency Detection_第10张图片

  • Data term ED(sli) and Hierarchy term EH(sli,sl+1j) 几乎与2013年的一样,不同之处在于添加了权重参数:

这里写图片描述

βi is fixed as {0.5, 4, 2} for i = {1, 2, 3};

这里写图片描述

  • Local Consistency term EC(sli,sl+1j) which enforces intra-layer smoothness. It is used to make saliency assignment smooth between adjacent similar regions.

这里写图片描述

Notation A(Rki):Rki的邻域集合。which means Rkj∈ A(Rki) if Rkj is the adjacent region of Rki

γk determines the strength of consistency for each layer.

Paper reading :Hierarchical Saliency Detection_第11张图片
(in the LUV color space)

σc is the normalization parameter.

Finally, optimaization.(有点儿复杂,以后再写,而且文中有很多的参数还没太弄明白,以后再更新)

你可能感兴趣的:(图像处理-显著性检测)