FFT算法的完整DSP实现

FFT算法的完整DSP实现
DFT计算X(k)需要N^2次复数乘法和N(N-1)次复数加法
FFT算法的流程图如下图,总结为3过程3循环:
(1)3过程:单点时域分解(倒位序过程) + 单点时域计算单点频谱 + 频域合成
(2)3循环:外循环——分解次数,中循环——sub-DFT运算,内循环——2点蝶形算法
FFT算法的完整DSP实现_第1张图片
分解过程或者说倒位序的获得参考下图理解:
FFT算法的完整DSP实现_第2张图片
FFT的DSP实现

下面为使用C语言实现的FFT及IFFT算法实例,能计算任意以2为对数底的采样点数的FFT,算法参考上面给的流程图。

/* 
 * zx_fft.h 
 * 
 *  Created on: 2013-8-5 
 *      Author: monkeyzx 
 */  

#ifndef ZX_FFT_H_  
#define ZX_FFT_H_  

typedef float          FFT_TYPE;  

#ifndef PI  
#define PI             (3.14159265f)  
#endif  

typedef struct complex_st {  
    FFT_TYPE real;  
    FFT_TYPE img;  
} complex;  

int fft(complex *x, int N);  
int ifft(complex *x, int N);  
void zx_fft(void);  

#endif /* ZX_FFT_H_ */  

[cpp] view plain copy



/* 
 * zx_fft.c 
 * 
 * Implementation of Fast Fourier Transform(FFT) 
 * and reversal Fast Fourier Transform(IFFT) 
 * 
 *  Created on: 2013-8-5 
 *      Author: monkeyzx 
 */  

#include "zx_fft.h"  
#include   
#include   

/* 
 * Bit Reverse 
 * === Input === 
 * x : complex numbers 
 * n : nodes of FFT. @N should be power of 2, that is 2^(*) 
 * l : count by bit of binary format, @l=CEIL{log2(n)} 
 * === Output === 
 * r : results after reversed. 
 * Note: I use a local variable @temp that result @r can be set 
 * to @x and won't overlap. 
 */  
static void BitReverse(complex *x, complex *r, int n, int l)  
{  
    int i = 0;  
    int j = 0;  
    short stk = 0;  
    static complex *temp = 0;  

    temp = (complex *)malloc(sizeof(complex) * n);  
    if (!temp) {  
        return;  
    }  

    for(i=0; i0;  
        j = 0;  
        do {  
            stk |= (i>>(j++)) & 0x01;  
            if(j1;  
            }  
        }while(jif(stk < n) {             /* 满足倒位序输出 */  
            temp[stk] = x[i];  
        }  
    }  
    /* copy @temp to @r */  
    for (i=0; ifree(temp);  
}  

/* 
 * FFT Algorithm 
 * === Inputs === 
 * x : complex numbers 
 * N : nodes of FFT. @N should be power of 2, that is 2^(*) 
 * === Output === 
 * the @x contains the result of FFT algorithm, so the original data 
 * in @x is destroyed, please store them before using FFT. 
 */  
int fft(complex *x, int N)  
{  
    int i,j,l,ip;  
    static int M = 0;  
    static int le,le2;  
    static FFT_TYPE sR,sI,tR,tI,uR,uI;  

    M = (int)(log(N) / log(2));  

    /* 
     * bit reversal sorting 
     */  
    BitReverse(x,x,N,M);  

    /* 
     * For Loops 
     */  
    for (l=1; l<=M; l++) {   /* loop for ceil{log2(N)} */  
        le = (int)pow(2,l);  
        le2 = (int)(le / 2);  
        uR = 1;  
        uI = 0;  
        sR = cos(PI / le2);  
        sI = -sin(PI / le2);  
        for (j=1; j<=le2; j++) {   /* loop for each sub DFT */  
            //jm1 = j - 1;  
            for (i=j-1; i<=N-1; i+=le) {  /* loop for each butterfly */  
                ip = i + le2;  
                tR = x[ip].real * uR - x[ip].img * uI;  
                tI = x[ip].real * uI + x[ip].img * uR;  
                x[ip].real = x[i].real - tR;  
                x[ip].img = x[i].img - tI;  
                x[i].real += tR;  
                x[i].img += tI;  
            }  /* Next i */  
            tR = uR;  
            uR = tR * sR - uI * sI;  
            uI = tR * sI + uI *sR;  
        } /* Next j */  
    } /* Next l */  

    return 0;  
}  

/* 
 * Inverse FFT Algorithm 
 * === Inputs === 
 * x : complex numbers 
 * N : nodes of FFT. @N should be power of 2, that is 2^(*) 
 * === Output === 
 * the @x contains the result of FFT algorithm, so the original data 
 * in @x is destroyed, please store them before using FFT. 
 */  
int ifft(complex *x, int N)  
{  
    int k = 0;  

    for (k=0; k<=N-1; k++) {  
        x[k].img = -x[k].img;  
    }  

    fft(x, N);    /* using FFT */  

    for (k=0; k<=N-1; k++) {  
        x[k].real = x[k].real / N;  
        x[k].img = -x[k].img / N;  
    }  

    return 0;  
}  

/* 
 * Code below is an example of using FFT and IFFT. 
 */  
#define  SAMPLE_NODES              (128)  
complex x[SAMPLE_NODES];  
int INPUT[SAMPLE_NODES];  
int OUTPUT[SAMPLE_NODES];  

static void MakeInput()  
{  
    int i;  

    for ( i=0;isin(PI*2*i/SAMPLE_NODES);  
        x[i].img = 0.0f;  
        INPUT[i]=sin(PI*2*i/SAMPLE_NODES)*1024;  
    }  
}  

static void MakeOutput()  
{  
    int i;  

    for ( i=0;isqrt(x[i].real*x[i].real + x[i].img*x[i].img)*1024;  
    }  
}  

void zx_fft(void)  
{  
    MakeInput();  

    fft(x,128);  
    MakeOutput();  

    ifft(x,128);  
    MakeOutput();  
}  

程序在TMS320C6713上实验,主函数中调用zx_fft()函数即可。

FFT的采样点数为128,输入信号的实数域为正弦信号,虚数域为0,数据精度定义FFT_TYPE为float类型,MakeInput和MakeOutput函数分别用于产生输入数据INPUT和输出数据OUTPUT的函数,便于使用CCS 的Graph功能绘制波形图。
输入波形
FFT算法的完整DSP实现_第3张图片
输入信号的频域幅值表示
FFT算法的完整DSP实现_第4张图片
FFT运算结果
FFT算法的完整DSP实现_第5张图片
对FFT运算结果逆变换(IFFT)
FFT算法的完整DSP实现_第6张图片
如何检验运算结果是否正确呢?
使用matlab验证,下面为相同情况的matlab图形验证代码

SAMPLE_NODES = 128;  
i = 1:SAMPLE_NODES;  
x = sin(pi*2*i / SAMPLE_NODES);  

subplot(2,2,1); plot(x);title('Inputs');  
axis([0 128 -1 1]);  

y = fft(x, SAMPLE_NODES);  
subplot(2,2,2); plot(abs(y));title('FFT');  
axis([0 128 0 80]);  

z = ifft(y, SAMPLE_NODES);  
subplot(2,2,3); plot(abs(z));title('IFFT');  
axis([0 128 0 1]);  

FFT算法的完整DSP实现_第7张图片

你可能感兴趣的:(FFT算法的完整DSP实现)