- 基于社交网络算法优化的二维最大熵图像分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法php开发语言
智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码文章目录智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码1.前言2.二维最大熵阈值分割原理3.基于社交网络优化的多阈值分割4.算法结果:5.参考文献:6.Matlab代码摘要:本文介绍基于最大熵的图像分割,并且应用社交网络算法进行阈值寻优。1.前言阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》htt
- 每天五分钟玩转深度学习PyTorch:模型参数优化器torch.optim
幻风_huanfeng
深度学习框架pytorch深度学习pytorch人工智能神经网络机器学习优化算法
本文重点在机器学习或者深度学习中,我们需要通过修改参数使得损失函数最小化(或最大化),优化算法就是一种调整模型参数更新的策略。在pytorch中定义了优化器optim,我们可以使用它调用封装好的优化算法,然后传递给它神经网络模型参数,就可以对模型进行优化。本文是学习第6步(优化器),参考链接pytorch的学习路线随机梯度下降算法在深度学习和机器学习中,梯度下降算法是最常用的参数更新方法,它的公式
- 【3.6 python中的numpy编写一个“手写数字识”的神经网络】
wang151038606
深度学习入门pythonnumpy神经网络
3.6python中的numpy编写一个“手写数字识”的神经网络要使用Python中的NumPy库从头开始编写一个“手写数字识别”的神经网络,我们通常会处理MNIST数据集,这是一个广泛使用的包含手写数字的图像数据集。但是,完全用NumPy来实现神经网络(包括数据的加载、预处理、模型定义、前向传播、损失计算、反向传播和权重更新)是一个相当复杂的任务,因为NumPy本身不提供自动微分或高级优化算法(
- TensorFlow的基本概念以及使用场景
张柏慈
决策树
TensorFlow是一个机器学习平台,用于构建和训练机器学习模型。它使用图形表示计算任务,其中节点表示数学操作,边表示计算之间的数据流动。TensorFlow的主要特点包括:1.多平台支持:TensorFlow可以运行在多种硬件和操作系统上,包括CPU、GPU和移动设备。2.自动求导:TensorFlow可以自动计算模型参数的梯度,通过优化算法更新参数,以提高模型的准确性。3.分布式计算:Ten
- 如何让大模型更聪明?
吗喽一只
人工智能算法机器学习
随着人工智能技术的飞速发展,大模型在多个领域展现出了前所未有的能力,但它们仍然面临着理解力、泛化能力和适应性等方面的挑战。让大模型更聪明,从算法创新、数据质量与多样性、模型架构优化等角度出发,我们可以采取以下策略:一、算法创新优化损失函数:损失函数是优化算法的核心,直接影响模型的最终性能。在大模型中,需要设计更为精细的损失函数来捕捉数据中的复杂性和细微差别。例如,结合任务特性和数据特性,设计多任务
- 2-90 基于matlab的总图专业平面布置优化程序
'Matlab学习与应用
matlab工程应用物流强度物流关系数数据物流流进厂房标号总图专业平面布置优化matlab
基于matlab的总图专业平面布置优化程序,输入数据物流流进厂房标号、物流关系数、物流关系标号、物流强度,双目标优化算法计算最优平面布置方案。程序已调通,可直接运行。下载源程序点链接:2-90基于matlab的总图专业平面布置优化程序
- Adam优化器:深度学习中的自适应方法
2401_85743969
深度学习人工智能
引言在深度学习领域,优化算法是训练神经网络的核心组件之一。Adam(AdaptiveMomentEstimation)优化器因其自适应学习率调整能力而受到广泛关注。本文将详细介绍Adam优化器的工作原理、实现机制以及与其他优化器相比的优势。深度学习优化器概述优化器在深度学习中负责调整模型的参数,以最小化损失函数。常见的优化器包括SGD(随机梯度下降)、RMSprop、AdaGrad、AdaDelt
- 基于深度学习的结构优化与生成
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的结构优化与生成技术应用于多种领域,例如建筑设计、机械工程、材料科学等。该技术通过使用深度学习模型分析和优化结构形状、材料分布、拓扑结构等因素,旨在提高结构性能、减少材料浪费、降低成本、并加快设计流程。1.结构优化与生成的核心概念结构优化:涉及通过调整结构设计参数(如形状、材料、厚度等)来改善其特定性能指标,如强度、刚度、重量、成本或安全性。传统的优化方法依赖于数值仿真和数学优化算法,
- 系统架构设计师——架构评估(一)
吴代庄
#系统架构设计师系统架构架构数据库系统架构设计师
质量属性1.性能:性能通常指软件系统的响应时间、处理速度和资源消耗等。高性能的软件应用能够快速响应用户请求,处理大量数据而不影响用户体验。在设计阶段,需要考虑优化算法、高效编码和适当的硬件资源配置来提高系统性能。提升性能提升性能是软件系统中至关重要的方面,尤其是在高负载和高并发的场景下。以下是提升性能的策略,包括资源需求、资源管理和资源仲裁:资源需求减少处理事件时对资源的占用:通过优化算法和数据结
- 约束优化求解之罚函数法
姑苏隐士
工程计算与计算物理数值优化方法算法线性代数机器学习数值计算最优化
罚函数法本部分考虑约束优化问题:minf(x)s.t.x∈χ(1)\begin{aligned}\minf(x)\\s.t.x\in\chi\end{aligned}\tag{1}minf(x)s.t.x∈χ(1)这里χ⊂Rn\chi\subset\mathbb{R}^nχ⊂Rn为问题的可行域。与无约束问题不同,约束优化问题中自变量xxx不能任意取值,这导致无约束优化算法不能使用。例如梯度法中沿
- 2024 数学建模国赛 C 题模型及算法(无废话版)
不染53
数学建模数学建模算法python
目录写在开始需要掌握的数学模型/算法评价体系/评价类问题时间序列处理数据降维聚类问题(无监督)分类问题(有监督)集成学习(Bagging/Boosting)回归问题关联分析统计学方法/统计模型智能优化算法需要掌握的Python专业库需要掌握的软件/工具写在开始本人获2023年数学建模国赛C题国家级一等奖,备赛期间专攻C题。本文总结了在备赛期间总结的模型和算法,足以应对90%国赛C题中涉及到的问题。
- 深度学习--机器学习相关(2)
在下小天n
深度学习深度学习机器学习人工智能
1.适应性矩估计适应性矩估计(AdaptiveMomentEstimation,Adam)是一种可以代替传统的梯度下降(SGD和MBGD)的优化算法。Adam算法结合了适应性梯度算法和均方根传播的优点。Momentum在学习机器学习时是很可能遇到的,是动量的意思。动量不是速度和学习率,应该说是类似于加速度。AdaGrad(适应性梯度算法)适应性梯度算法的特点在于:独立地调整每一个参数的学习率。在S
- pyro.optim pyro ppl 概率编程 优化器 pytorch
zhangfeng1133
pytorch人工智能python
最佳化¶该模块pyro.optim为Pyro中的优化提供支持。特别是,它提供了焦光性,用于包装PyTorch优化器并管理动态生成参数的优化器(参见教程SVI第一部分供讨论)。任何自定义优化算法也可以在这里找到。烟火优化器¶is_调度程序(【计算机】优化程序)→弯曲件[来源]¶帮助器方法,用于确定PyTorch对象是PyTorch优化器(返回false)还是包装在LRScheduler中的优化器Re
- DAY60-图论-Bellman_ford
No.Ada
LeetCode刷题手册图论
Bellman_ford队列优化算法(又名SPFA)publicstaticvoidmain(String[]args){Scannerscan=newScanner(System.in);intn=scan.nextInt();intm=scan.nextInt();//初始化List>edges=newArrayListtemp=newArrayListqueue=newLinkedListt
- Datawhale X 李宏毅苹果书 AI夏令营 入门 Task3-机器学习框架
沙雕是沙雕是沙雕
人工智能机器学习
目录实践方法论1.模型偏差2.优化问题3.过拟合4.交叉验证5.不匹配实践方法论1.模型偏差当一个模型由于其结构的限制,无法捕捉数据中的真实关系时,即使找到了最优的参数,模型的损失依然较高。可以通过增加输入特征、使用更复杂的模型结构或采用深度学习等方法来新设计模型,增加模型的灵活性。2.优化问题在机器学习模型训练过程中,即使模型的灵活性足够高,也可能由于优化算法的问题导致训练数据的损失不够低。为了
- 李宏毅机器学习笔记——反向传播算法
小陈phd
机器学习机器学习算法神经网络
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
- 提醒一下技术人,你是不是陷入局部最优了
ngu2008
首先看一张函数图像:函数图像很明显,这个函数最小值点在E点,而A、C、G是函数的局部极小值点。我读书期间学的数学专业,研究的方向就是最优化算法,说的直白点,就是找函数的最小值点,如果得找到了E点就说明成功了,可是如果只找到了A、C、G中的一个就停滞,这时算法就陷入局部最优了,这个时候就需要修改算法,需要加入一些扰动或者其他策略,避免函数陷入局部最优解,所以最优化算法有一个非常重要的点就是要避免算法
- 【论文笔记】Multi-Task Learning as a Bargaining Game
xhyu61
机器学习学习笔记论文笔记论文阅读人工智能深度学习
Abstract本文将多任务学习中的梯度组合步骤视为一种讨价还价式博弈(bargaininggame),通过游戏,各个任务协商出共识梯度更新方向。在一定条件下,这种问题具有唯一解(NashBargainingSolution),可以作为多任务学习中的一种原则方法。本文提出Nash-MTL,推导了其收敛性的理论保证。1Introduction大部分MTL优化算法遵循一个通用方案。计算所有任务的梯度g
- 数学建模强化宝典(7)模拟退火算法
IT 青年
建模强化栈数学建模模拟退火算法编程
前言模拟退火算法(SimulatedAnnealing,SA)是一种基于概率的全局优化算法,它模拟了固体退火过程中的物理现象,通过随机搜索和概率接受机制来寻找问题的全局最优解。以下是对模拟退火算法的详细解析:一、算法起源与背景起源:模拟退火算法的思想最早由N.Metropolis等人在1953年提出,用于研究粒子在金属中的退火过程。1983年,S.Kirkpatrick等人成功地将这一思想引入到组
- 分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出
机器不会学习CL
分类预测智能优化算法分类支持向量机matlab
分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM多特征输入多类别输出文章目录一、基本原理1.最小二乘支持向量机(LSSVM)LSSVM的基本步骤:2.鲸鱼优化算法(WOA)WOA的基本步骤:3.WOA-LSSVM的结合流程结合的流程如下:总结二、实验结果三、核心代码四、代码获取五、总结分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的
- 这项来自中国的AI研究介绍了1位全量化训练(FQT):增强了全量化训练(FQT)的能力至1位
量子位AI
人工智能机器学习深度学习
全量化训练(FQT)可以通过将激活、权重和梯度转换为低精度格式来加速深度神经网络的训练。量化过程使得计算速度更快,且内存利用率更低,从而使训练过程更加高效。FQT在尽量减少数值精度的同时,保持了训练的有效性。研究人员一直在研究1位FQT的可行性,试图探索这些限制。该研究首先从理论上分析了FQT,重点关注了如Adam和随机梯度下降(SGD)等知名的优化算法。分析中出现了一个关键发现,那就是FQT收敛
- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 二进制基础和STM32的常用位运算
千千道
STM32C语言stm32单片机算法
目录一、引言二、二进制基础1.二进制的表示2.二进制的优势3.二进制与十进制的转换三、位运算基础1.按位与(&)2.按位或(|)3.按位异或(^)4.按位取反(~)5.左移(>)四、STM32的常用位运算1.清0操作2.置1操作五、实际应用场景六、注意事项一、引言在计算机科学中,二进制和位运算是非常基础且重要的概念。它们在底层编程、优化算法、数据压缩等方面都有着广泛的应用。本文将深入介绍二进制的基
- 这才是老板喜欢的数据分析简历
itLeeyw
简历怎么写数据分析数据挖掘简历简历模板速创猫AI简历
速创猫今天给大家分享的是应届毕业生数据分析简历优化案例,希望对大家求职有帮助。速创猫总结了以下七条简历制作干货,希望对大家有帮助:明确目标岗位:在简历的开头,清晰地标明你申请的职位和行业,让HR一眼就能看出你的求职意向。量化成果:用具体的数字来展示你的成就,比如“通过优化算法,提升了数据处理效率20%”,这样的描述比“提高了数据处理效率”更有说服力。技能与工具:列出你熟悉的数据分析工具和编程语言,
- 【LSTM分类】基于贝叶斯优化卷积神经网络结合长短时记忆BO-CNN-LSTM实现柴油机故障诊断含Matlab源码
matlab科研助手
lstm分类cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍柴油机作为重要的动力设备,其运行状态的可靠性直接影响着生产效率和安全。及时准确地诊断柴
- 【MATLAB源码-第157期】基于matlab的海马优化算法(SHO)机器人栅格路径规划,输出做短路径图和适应度曲线。
Matlab程序猿小助手
通信原理算法matlab机器人开发语言信息与通信启发式算法
操作环境:MATLAB2022a1、算法描述海马优化器(SeaHorseOptimizer,SHO)是一种近年来提出的新型启发式算法,其设计灵感来源于海洋中海马的行为模式,特别是它们在寻找食物和伴侣时表现出的独特策略。海马因其独特的外形和行为而著称于世,它们的这些行为为解决复杂的优化问题提供了新的思路。启发式算法通常模拟自然界中生物的行为或自然现象来解决数学和工程中的优化问题,海马优化器正是这样一
- EI级 | Matlab实现TCN-LSTM-MATT、TCN-LSTM、TCN、LSTM多变量时间序列预测对比
天天Matlab代码科研顾问
matlablstm开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍风电作为一种清洁、可再生能源,近年来得到了快速发展。准确预测风电功率输出对于提高风电场运行效率,优化电
- 代码随想录算法训练营Day61 || 图论part 10
傲世尊
图论
Bellman_ford队列优化算法:又叫做SPFA,在做松弛操作时,只更新以目前操作节点为出发点能到达的节点的minDist,避免多余操作。判断负权回路:如果有负权回路,进行第n次松弛的时候,minDist数组会有变化。最多经过k个城市,那么就对所有边进行k+1次松弛即可。
- Datawhale X 李宏毅苹果书AI夏令营深度学习详解进阶Task02
z are
人工智能深度学习
目录一、自适应学习率二、学习率调度三、优化总结四、分类五、问题与解答本文了解到梯度下降是深度学习中最为基础的优化算法,其核心思想是沿着损失函数的梯度方向更新模型参数,以最小化损失值。公式如下:θt+1←θt-η*∇θL(θt)其中,θ表示模型参数,η表示学习率,L表示损失函数,∇θL表示损失函数关于参数的梯度。然而,梯度下降在复杂误差表面上存在局限性。例如,在鞍点或局部最小值处,梯度接近零,导致模
- 没有免费的午餐定理
做程序员的第一天
机器学习人工智能机器学习
没有免费午餐定理(NoFreeLunchTheorem,NFL)是由Wolpert和Macerday在最优化理论中提出的.没有免费午餐定理证明:对于基于迭代的最优化算法,不存在某种算法对所有问题(有限的搜索空间内)都有效.如果一个算法对某些问题有效,那么它一定在另外一些问题上比纯随机搜索算法更差.也就是说,不能脱离具体问题来谈论算法的优劣,任何算法都有局限性.必须要“具体问题具体分析”.没有免费午
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&