对于一些简单的查找我们可以用c库函数strstr
#include
#include
typedef char* Position;
#define NotFound NULL
int main()
{
char string[] = "This is a simple example.";
char pattern[] = "simple";
Position p = strstr( string, pattern );
if ( p == NotFound ) printf("Not Found.\n");
else printf("%s\n", p);
return 0;
}
但是时间复杂度太高
因此我们需要去学习KMP算法,时间复杂度为O (n + m )
用kmp算法最重要的就是求next值
具体求法我传到了资源库,有时间的话会过来完善下
pattern |
A |
B |
C |
A |
B |
C |
A |
C |
A |
B |
J |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
next |
-1 |
-1 |
-1 |
0 |
1 |
2 |
3 |
-1 |
0 |
1 |
下面是具体的代码实现
#include
#include
#include
//match 相当于next
typedef int Position;
#define NotFound -1
void BuildMatch( char *pattern, int *match )
{
Position i, j;
int m = strlen(pattern);
match[0] = -1;
for ( j=1; j=0) && (pattern[i+1]!=pattern[j]) )//不匹配时,回退
i = match[i];
if ( pattern[i+1]==pattern[j] ) // 后面的匹配上了
match[j] = i+1;
else match[j] = -1;
}
}
Position KMP( char *string, char *pattern )
{
int n = strlen(string); // O(n)
int m = strlen(pattern); // O(m)
Position s, p, *match;
if ( n < m ) return NotFound;
match = (Position *)malloc(sizeof(Position) * m);
BuildMatch(pattern, match);
s = p = 0;
while ( s0) p = match[p-1]+1; //前面匹配不到的时候,回溯到[p-1]+1
else s++; //一开始就不匹配
}
return ( p==m )? (s-m) : NotFound;
}
int main()
{
char string[] = "This is a simple example.";
char pattern[] = "simple";
Position p = KMP(string, pattern);
if (p==NotFound) printf("Not Found.\n");
else printf("%s\n", string+p);
return 0;
}
下面是一些OJ题的应用
2087剪花布条
Problem Description
一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案。对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢?
Input
输入中含有一些数据,分别是成对出现的花布条和小饰条,其布条都是用可见ASCII字符表示的,可见的ASCII字符有多少个,布条的花纹也有多少种花样。花纹条和小饰条不会超过1000个字符长。如果遇见#字符,则不再进行工作。
Output
输出能从花纹布中剪出的最多小饰条个数,如果一块都没有,那就老老实实输出0,每个结果之间应换行。
Sample Input
abcde a3
aaaaaa aa
#
Sample Output
0 3
#include
const int maxn = 10005;
int next[maxn];
void get_next( char * s );
int kmp( char *string, char *pattern );
int main()
{
char string[10005], pattern[10005];
while(1) {
scanf("%s", &*string);
if ( string[0] == '#' && !string[1] ) break;
scanf("%s", &*pattern);
printf("%d\n",kmp(string,pattern));
}
return 0;
}
void get_next( char *s )
{
int i = 0, j = -1;
next[0] = -1;
while ( s[i] ) {
if ( j== -1 || s[i] == s[j] )
next[++i] = ++j;
else
j = next[j];
}
}
int kmp( char *string, char *pattern )
{
int answers = 0;
get_next( pattern );
int i = 0, j = 0;
while ( string[i] ) {
if ( j == -1 || string[i] == pattern[j] ) {
i++,j++;
if ( !pattern[j] ) {
answers++;
j = 0;
}
}
else j = next[j];
}
return answers;
}
Problem Description
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A', 'B', 'C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with the word W, a string over {'A', 'B', 'C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
One line with the text T, a string over {'A', 'B', 'C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3
BAPC
BAPC
AZA
AZAZAZA
VERDI
AVERDXIVYERDIAN
Sample Output
1 3 0
#include
#include
#include
const int maxn = 10005;
int next[maxn];
int cnt;
char string[10005], pattern[10005];
void get_next( int len2 );
int kmp(int len1, int len2 );
int main()
{
int num, len1, len2;
scanf("%d",&num);
getchar();
while ( num-- ) {
gets(pattern);
gets(string);
len1 = strlen(string);
len2 = strlen(pattern);
cnt = 0;
kmp(len1,len2);
printf("%d\n",cnt);
}
return 0;
}
void get_next( int len2 )
{
int i = 0, j = -1;
next[0] = -1;
while ( i < len2 ) {
if ( j == -1 || pattern[i] == pattern[j] )
next[++i] = ++j;
else
j = next[j];
}
}
int kmp( int len1, int len2 )
{
int i = 0, j = 0;
get_next(len2);
while ( i < len1 ) {
if ( j == -1 || string[i] == pattern[j] ) {
++i,++j;
}
else
j = next[j];
if ( j == len2 ) {
cnt++;
j = next[j];
}
}
return 0;
}