数据库作为基础数据支撑层的核心部分,对于应用和平台整体性能表现有着决定性的影响。因此,数据库性能优化可以说是最考验DBA能力的工作了。本文我们就由数据库内核专家来,以 SequoiaDB 5.0 内核的部分性能优化为例,带领各位数据库爱好者揭开数据库性能优化的“神秘面纱”。
提高数据库性能的方式有很多,总结起来从易到难无外乎如下三种:
在数据库内核的调优中,开发人员通常会跑一定的workload或benchmark,使用操作系统或三方提供的工具,持续监控系统各类资源的使用情况,在高并发系统中,也会关注并发控制中使用的锁和原子变量带来的开销。下面我们通过TPCC场景下的逐步优化SequoiaDB内核的过程,来了解我们是如何使用工具来定位优化数据引擎的。
1. CPU usage
我们常使用两大神器观察CPU使用情况:top 和 perf。top能动态的显示linux 系统中各进程/线程以及内存使用的汇总信息。
/
以上图为例,我们知道这台机器的CPU基本上被用满了,其中系统CPU占13%,用户CPU占81.7%。如果CPU出现过多的空闲,往往意味着系统要么还可以增加负载提高性能,要么有瓶颈导致CPU上不去,比如说并发不好,太多等待,串行化太多。在这个例子中,我们没有看到等IO的情况,idle的比例也非常小,这都是好的现象。在CPU用满的情况下,优化系统也意味着要尽量减少开销,让系统能尽可能的跑多点任务。需要注意的是,如果系统CPU过高,意味着CPU不是在执行跟程序逻辑相关的指令,也可以理解为是overhead。根据以往的经验,这里系统CPU占比还是偏高。使用线程模式,更进一步分析,我们可以看到潜在的问题可能是在系统调用,context switch和并发控制的mutex上。
至于更精确的定位,就要perf出马了。注意的是SequoiaDB 的代码编译时加入了debug symbol,这样会带来一定的性能损失,但能够极大的方便问题诊断和定位。
perf 是linux提供的一种基于event的性能搜集分析工具,能够分析CPU/内存/锁等资源的统计信息。perf本身已经提供了相当完整的文字的报表输出功能。
比如这里能看到system_call 也是跟sys_futex 相关的,通常是线程/进程同步共享资源互踩时造成的,还有部分是通讯线程相关的。这样我们的方向就可以从各种锁冲突入手。Perf也能提供锁冲突的信息。
为了简单直观的分析结果,我们还使用火焰图(flame graph)来用图形的方式展现结果,以利用更快的发现问题。下面两张图分别提供了CPU和锁的使用统计:从中我们发现的确有几处热的Latch/mutex。比如内存分配时使用共享内存池,这是会造成等锁的现象,我们可以通过使用线程上独享的内存池解决;还要部分内部表的物理锁冲突严重,我们通过增加锁的控制粒度减少冲突;再有就是尽量减少锁内操作,比如内存分配,磁盘IO尽可能的搬出热锁保护范围。通过一系列优化,我们实现了5%左右的性能提升。
CPU 火焰图
锁火焰图
2. Memory allocation
内存是个好东西,现在计算机系统内存越来越大,软件也尽量通过使用内存来实现空间换时间以提高系统相应速度。但是动态内存分配常常成为了高性能软件的性能瓶颈。我们通过perf 来抓取系统内存的使用情况,并用火焰图显示出来:
这里明显看到的是很多动态内存分配发生在一个set的插入过程中。Std::set内部使用的红黑树,每次结点的插入都要进行内存分配。为了减少系统内存的动态分配与回收,SequoiaDB实现了一整套自己的内存管理机制。最开始尽量在线程预分配好的内存池上分配空间,这点和tcmalloc的原理很接近,这时的开销最小,内存事先已经从操作系统分配好了,而且本线程上分配是无锁的。但是如果线程内存池用完了,我们会到一个共享的预分配好的内存池上分配,这时会多一个锁的开销。但这两处都用完了,我们才向操作系统申请。从火焰图上看,我们基本上都走到向操作系统分配的分支中了。针对这种情况,我们优化了set的实现。当set中结点数量较小时,我们用一个flat的较小的array存放数据,避免了动态内存分配。当结点数较多时,我们再转化成树型结构以提高查找效率。但是我们会提高线程上允许的缓冲池的大小,特别是小结构线程池大小。最终我们避免了绝大多少的动态内存分配与回收,提升了系统性能。通过这块的分析,我们也反过来帮助确定那些query会用到大量数据,并优化对应的query。
3. Cache line misses
大家知道现代CPU的主频非常高,常有超过3GHz,执行指令速度非常快。但是我们存储访问速度始终跟不上,高速的内存又非常贵,这就是现代CPU里有几级不同速度不同大小内存的原因,常见的CPU内集成有L1,L2,L3级缓存。CPU执行时需要从缓存中获取指令和数据。在我们编译程序的时候,编译器会试图优化程序,使得CPU能有效的重用或预提取数据和指令。当CPU在缓存中找不到合适的指令和数据时,就不等不从主存甚至磁盘上读取他们,这样的开销非常大,我们用CPU cache line miss来衡量这中情况出现的频繁程度。
我们还是通过perf命令来搜集cache line miss的情况,
详细信息分解开来,最大一块是由monitor引起的
然后我们检查monitor相关的代码,发现代码中有个switch语句公有14个分支,但最常用的一个分支放在了后面。我们只需要将其挪到前面,我们的miss就有显著下降。
还有另外一种情况造成严重的cache line miss,就是使用原子变量,特别是频繁使用的原子变量。因为一旦该变量被变更了,所有cache 里的值都会变成无效,那么CPU使用时一定会碰到cache line miss。我们通过分析代码逻辑,对于某些常用的确不需要时时精确的值,我们可以在程序逻辑开始存为本地变量,避免过多的直接访问。对于一些只需要单线程访问的变量,我们也避免使用原子变量。
小结:
上面我们通过几个例子,为大家展现了如何通过系统工具进行数据库内核性能优化,同样的思路也可以适用于其他底层软件的开发调试。在实际的实践过程中,除了使用合适的工具,更重要的是还要细心,有耐心和钻研的精神,一步步的下手,从现象中抽丝剥茧,找到根本原因。