POJ1163 The Triangle

1.题目信息(http://poj.org/problem?id=1163)

The Triangle
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 30397   Accepted: 17973

Description

7
3   8
8   1   0
2   7   4   4
4   5   2   6   5

(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right. 

Input

Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.

Output

Your program is to write to standard output. The highest sum is written as an integer.

Sample Input

5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

Sample Output

30

2.算法分析

    本题是经典的动态规划题,要求出要求的最大值(最优)。大致意思是,从三角形顶部数字走,每次只能走到这个数字的左下角或者右下角的数字,直到底部,计算走过的线路的数字之和,求这个和的最大值,我们暂且称之为数字的最大路线和。我们可以转换为求任意数字的最大路线和,本题要求的最大值即:所有数字的最大路线和的最大值。比如,我们要求数字1的最大路线和,则最大路线是: 7->8->1,最大路线和就是16 。我们把三角记录在数组a中,把数字的最大路线和数组m中,则动态规划方程如下:

m[ i ][ j ] = max { m[ i -1][ j-1 ] + m[ i-1][ j ] } + a[ i ][ j ]

即:某一数字的最大路线和 =   max {左上角数字最大路线和,右上角数字最大路线和} + 该数字值

3.参考代码


/*
  Name: POJ1163 The Triangle
  Author:chenbin 
  Date: 09-10-12 12:00
  Description: http://poj.org/problem?id=1163
*/
#include 
#include 

int main()
{
    short int a[100][100],i = 0,j = 0,N,max = 0,upleft = 0,upright = 0;
    memset(a,0,sizeof(a));
    scanf("%d",&N);
    for(i = 0;i < N ; i++)
    {
        for(j = 0 ; j <= i ; j++)
        {
            scanf("%d",&a[i][j]);
            short upleft = (i-1 >= 0)&&(j-1 >= 0) ? a[i-1][j-1] : 0;
            short upright = (i-1 >= 0) ? a[i-1][j] : 0;
            a[i][j] = ( upleft > upright ? upleft : upright )+ a[i][j];
            max = a[i][j] > max ? a[i][j] : max;
        }
    }
    printf("%d",max);
    return 0;
}


4.代码优化

可从如下几个方面优化代码

(1).数组采用压缩矩阵,可以节省一半内存

(2).将i=0,j=0的特殊情况特殊处理,可消除upleft和upright的的判断,甚至可以不用这两个变量。

(3).定义宏,替换?:求最大值的方式。

如有其它好的算法和代码,欢迎讨论



你可能感兴趣的:(ACM&算法)