[曼哈顿距离,线段树]Educational Codeforces Round 56 G Multidimensional Queries

题目:[曼哈顿距离,线段树]Educational Codeforces Round 56G. Multidimensional Queries

原题链接:

http://codeforces.com/contest/1093/problem/G

题意:

给n个k维的点,q个询问,求曼哈顿距离最远的两个点的距离,操作是改点的坐标。

题解:

和poj2926是一样的,压缩下状态就好。

poj2926看这位大神的博客https://www.cnblogs.com/tanhehe/archive/2013/05/25/3099400.html

然后在线操作的话就维护下(1<

总结:

查询的时候分别查一次最大值和最小值,不要直接查询最大值和最小值的差,因为线段树维护的不是这个差,而是极值。

代码:

#define push_back pb
#define make_pair mk
#define rd read()
#define mem(a,b) memset(a,b,sizeof(a))
#define bug printf("*********\n");
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define ls tr[u].ch[0]
#define rs tr[u].ch[1]
#define FIN freopen(D://code//in.txt", "r", stdin);
#define debug(x) cout<<"["<
#define IO ios::sync_with_stdio(flse),cin.tie(0);
//#pragma comment(linker,"/STACk:1024000000,1024000000")
//#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using std::pair;


typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
//const double PI=acos(-1);


const int maxn = 2e5 + 10;
const int maxm = 1e6 + 10;
const int mod = 998244353 ;
const int inf = 0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const double dinf=1e20;
const double eps=1e-8;
using namespace std;

ll read() {
    ll X = 0, p = 1; char c = getchar();
    for(; c > '9' || c < '0'; c = getchar()) if(c == '-') p = -1;
    for(; c >= '0' && c <= '9'; c = getchar()) X = X * 10 + c - '0';
    return X * p;
}
//*********************************************************************

int n,dem;
int a[maxn][6];
int ma[maxn<<2][33],mi[maxn<<2][33];
void pushup(int rt)
{
    for(int i=0;i<(1<<dem);i++)
    {
        ma[rt][i]=max(ma[rt<<1][i],ma[rt<<1|1][i]);
        mi[rt][i]=min(mi[rt<<1][i],mi[rt<<1|1][i]);
    }
}
void build(int l,int r,int rt)
{
    if(l==r)
    {
        int sum=0;
        for(int i=0;i<(1<<dem);i++)
        {
            ma[rt][i]=-inf;
            mi[rt][i]=inf;
        }
        for(int i=0;i<(1<<dem);i++)
        {
            int sum=0;
            for(int k=0;k<dem;k++)
            {
                if((i>>k)&1) sum+=a[l][k];
                else sum-=a[l][k];
            }
            ma[rt][i]=max(ma[rt][i],sum);
            mi[rt][i]=min(mi[rt][i],sum);
        }
        return ;
    }
    int mid=(l+r)>>1;
    build(lson);
    build(rson);
    pushup(rt);
}
void update(int p,int l,int r,int rt)
{
    if(l==p&&r==p)
    {
        int sum=0;
        for(int i=0;i<(1<<dem);i++)
        {
            ma[rt][i]=-inf;
            mi[rt][i]=inf;
        }
        for(int i=0;i<(1<<dem);i++)
        {
            int sum=0;
            for(int k=0;k<dem;k++)
            {
                if((i>>k)&1) sum+=a[l][k];
                else sum-=a[l][k];
            }
            ma[rt][i]=max(ma[rt][i],sum);
            mi[rt][i]=min(mi[rt][i],sum);
        }
        return ;
    }
    int mid=(l+r)>>1;
    if(p<=mid) update(p,lson);
    if(mid<p) update(p,rson);
    pushup(rt);
}

int query(int L,int R,int l,int r,int rt,int i,int f)
{
    if(L<=l&&r<=R)
    {
        if(f)return ma[rt][i];
        else return mi[rt][i];
    }
    int mid=(l+r)>>1;
    int ret;
    if(f)
    {
        ret=-inf;
        if(L<=mid) ret=max(ret,query(L,R,lson,i,f));
        if(R>mid) ret=max(ret,query(L,R,rson,i,f));
    }
    else
    {
        ret=inf;
        if(L<=mid) ret=min(ret,query(L,R,lson,i,f));
        if(R>mid) ret=min(ret,query(L,R,rson,i,f));
    }
    return ret;
}
/*void dfs(int l,int r,int rt,int i)
{
    if(l>r) return ;
    if(l==r)
    {
        cout<<l<<" "<<r<<" "<<ma[rt][i]<<" "<<mi[rt][i]<<endl;
        return;
    }
    int mid=(l+r)>>1;
    dfs(lson,i);
    cout<<l<<" "<<r<<" "<<ma[rt][i]<<" "<<mi[rt][i]<<endl;
    dfs(rson,i);
}*/
int main()
{
    cin>>n>>dem;
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<dem;j++)
            scanf("%d",&a[i][j]);
    }
    build(1,n,1);
    int q;
    cin>>q;
    int op,l,r;
    while(q--)
    {
        scanf("%d%d",&op,&l);
        if(op==1)
        {
            for(int i=0;i<dem;i++) scanf("%d",&a[l][i]);
            update(l,1,n,1);
        }
        else
        {
            scanf("%d",&r);
            int ans=-inf;
            for(int i=0;i<(1<<dem);i++)
            {
                ans=max(ans,query(l,r,1,n,1,i,1)-query(l,r,1,n,1,i,0));
            }
            printf("%d\n",ans);
        }
    }
}

你可能感兴趣的:(线段树)