Pandas处理混乱数据

使用Pandas处理杂乱数据

现在我有一份非常乱的数据,随便从里面读出一列就可以看出来有多乱了:

import pandas as pd 
import numpy as np 
data = pd.read_csv("data.csv")
data['Incident Zip'].unique()
D:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:2698: DtypeWarning: Columns (8) have mixed types. Specify dtype option on import or set low_memory=False.
  interactivity=interactivity, compiler=compiler, result=result)





array([11432.0, 11378.0, 10032.0, 10023.0, 10027.0, 11372.0, 11419.0,
       11417.0, 10011.0, 11225.0, 11218.0, 10003.0, 10029.0, 10466.0,
       11219.0, 10025.0, 10310.0, 11236.0, nan, 10033.0, 11216.0, 10016.0,
       10305.0, 10312.0, 10026.0, 10309.0, 10036.0, 11433.0, 11235.0,
       11213.0, 11379.0, 11101.0, 10014.0, 11231.0, 11234.0, 10457.0,
       10459.0, 10465.0, 11207.0, 10002.0, 10034.0, 11233.0, 10453.0,
       10456.0, 10469.0, 11374.0, 11221.0, 11421.0, 11215.0, 10007.0,
       10019.0, 11205.0, 11418.0, 11369.0, 11249.0, 10005.0, 10009.0,
       11211.0, 11412.0, 10458.0, 11229.0, 10065.0, 10030.0, 11222.0,
       10024.0, 10013.0, 11420.0, 11365.0, 10012.0, 11214.0, 11212.0,
       10022.0, 11232.0, 11040.0, 11226.0, 10281.0, 11102.0, 11208.0,
       10001.0, 10472.0, 11414.0, 11223.0, 10040.0, 11220.0, 11373.0,
       11203.0, 11691.0, 11356.0, 10017.0, 10452.0, 10280.0, 11217.0,
       10031.0, 11201.0, 11358.0, 10128.0, 11423.0, 10039.0, 10010.0,
       11209.0, 10021.0, 10037.0, 11413.0, 11375.0, 11238.0, 10473.0,
       11103.0, 11354.0, 11361.0, 11106.0, 11385.0, 10463.0, 10467.0,
       11204.0, 11237.0, 11377.0, 11364.0, 11434.0, 11435.0, 11210.0,
       11228.0, 11368.0, 11694.0, 10464.0, 11415.0, 10314.0, 10301.0,
       10018.0, 10038.0, 11105.0, 11230.0, 10468.0, 11104.0, 10471.0,
       11416.0, 10075.0, 11422.0, 11355.0, 10028.0, 10462.0, 10306.0,
       10461.0, 11224.0, 11429.0, 10035.0, 11366.0, 11362.0, 11206.0,
       10460.0, 10304.0, 11360.0, 11411.0, 10455.0, 10475.0, 10069.0,
       10303.0, 10308.0, 10302.0, 11357.0, 10470.0, 11367.0, 11370.0,
       10454.0, 10451.0, 11436.0, 11426.0, 10153.0, 11004.0, 11428.0,
       11427.0, 11001.0, 11363.0, 10004.0, 10474.0, 11430.0, 10000.0,
       10307.0, 11239.0, 10119.0, 10006.0, 10048.0, 11697.0, 11692.0,
       11693.0, 10573.0, 83.0, 11559.0, 10020.0, 77056.0, 11776.0,
       70711.0, 10282.0, 11109.0, 10044.0, '10452', '11233', '10468',
       '10310', '11105', '10462', '10029', '10301', '10457', '10467',
       '10469', '11225', '10035', '10031', '11226', '10454', '11221',
       '10025', '11229', '11235', '11422', '10472', '11208', '11102',
       '10032', '11216', '10473', '10463', '11213', '10040', '10302',
       '11231', '10470', '11204', '11104', '11212', '10466', '11416',
       '11214', '10009', '11692', '11385', '11423', '11201', '10024',
       '11435', '10312', '10030', '11106', '10033', '10303', '11215',
       '11222', '11354', '10016', '10034', '11420', '10304', '10019',
       '11237', '11249', '11230', '11372', '11207', '11378', '11419',
       '11361', '10011', '11357', '10012', '11358', '10003', '10002',
       '11374', '10007', '11234', '10065', '11369', '11434', '11205',
       '11206', '11415', '11236', '11218', '11413', '10458', '11101',
       '10306', '11355', '10023', '11368', '10314', '11421', '10010',
       '10018', '11223', '10455', '11377', '11433', '11375', '10037',
       '11209', '10459', '10128', '10014', '10282', '11373', '10451',
       '11238', '11211', '10038', '11694', '11203', '11691', '11232',
       '10305', '10021', '11228', '10036', '10001', '10017', '11217',
       '11219', '10308', '10465', '11379', '11414', '10460', '11417',
       '11220', '11366', '10027', '11370', '10309', '11412', '11356',
       '10456', '11432', '10022', '10013', '11367', '11040', '10026',
       '10475', '11210', '11364', '11426', '10471', '10119', '11224',
       '11418', '11429', '11365', '10461', '11239', '10039', '00083',
       '11411', '10075', '11004', '11360', '10453', '10028', '11430',
       '10307', '11103', '10004', '10069', '10005', '10474', '11428',
       '11436', '10020', '11001', '11362', '11693', '10464', '11427',
       '10044', '11363', '10006', '10000', '02061', '77092-2016', '10280',
       '11109', '14225', '55164-0737', '19711', '07306', '000000',
       'NO CLUE', '90010', '10281', '11747', '23541', '11776', '11697',
       '11788', '07604', 10112.0, 11788.0, 11563.0, 11580.0, 7087.0,
       11042.0, 7093.0, 11501.0, 92123.0, 0.0, 11575.0, 7109.0, 11797.0,
       '10803', '11716', '11722', '11549-3650', '10162', '92123', '23502',
       '11518', '07020', '08807', '11577', '07114', '11003', '07201',
       '11563', '61702', '10103', '29616-0759', '35209-3114', '11520',
       '11735', '10129', '11005', '41042', '11590', 6901.0, 7208.0,
       11530.0, 13221.0, 10954.0, 11735.0, 10103.0, 7114.0, 11111.0,
       10107.0], dtype=object)

这一列中,既有字符串str、又有浮点数float、还有缺失值(nan、no clue),还有一些极不规范的数据。

接下来我们将对这些数据一一进行处理:

1. 转换字符类型

可以在读取数据时就将这一列数据的类型统一转换为字符串,方便进行批量处理,并同时对nan数据进行统一表达。

na_values = ['NO CLUE', 'N/A', '0']
data = pd.read_csv('data.csv', na_values=na_values, dtype={'Incident Zip': str})
data["Incident Zip"].unique()
array(['11432', '11378', '10032', '10023', '10027', '11372', '11419',
       '11417', '10011', '11225', '11218', '10003', '10029', '10466',
       '11219', '10025', '10310', '11236', nan, '10033', '11216', '10016',
       '10305', '10312', '10026', '10309', '10036', '11433', '11235',
       '11213', '11379', '11101', '10014', '11231', '11234', '10457',
       '10459', '10465', '11207', '10002', '10034', '11233', '10453',
       '10456', '10469', '11374', '11221', '11421', '11215', '10007',
       '10019', '11205', '11418', '11369', '11249', '10005', '10009',
       '11211', '11412', '10458', '11229', '10065', '10030', '11222',
       '10024', '10013', '11420', '11365', '10012', '11214', '11212',
       '10022', '11232', '11040', '11226', '10281', '11102', '11208',
       '10001', '10472', '11414', '11223', '10040', '11220', '11373',
       '11203', '11691', '11356', '10017', '10452', '10280', '11217',
       '10031', '11201', '11358', '10128', '11423', '10039', '10010',
       '11209', '10021', '10037', '11413', '11375', '11238', '10473',
       '11103', '11354', '11361', '11106', '11385', '10463', '10467',
       '11204', '11237', '11377', '11364', '11434', '11435', '11210',
       '11228', '11368', '11694', '10464', '11415', '10314', '10301',
       '10018', '10038', '11105', '11230', '10468', '11104', '10471',
       '11416', '10075', '11422', '11355', '10028', '10462', '10306',
       '10461', '11224', '11429', '10035', '11366', '11362', '11206',
       '10460', '10304', '11360', '11411', '10455', '10475', '10069',
       '10303', '10308', '10302', '11357', '10470', '11367', '11370',
       '10454', '10451', '11436', '11426', '10153', '11004', '11428',
       '11427', '11001', '11363', '10004', '10474', '11430', '10000',
       '10307', '11239', '10119', '10006', '10048', '11697', '11692',
       '11693', '10573', '00083', '11559', '10020', '77056', '11776',
       '70711', '10282', '11109', '10044', '02061', '77092-2016', '14225',
       '55164-0737', '19711', '07306', '000000', '90010', '11747',
       '23541', '11788', '07604', '10112', '11563', '11580', '07087',
       '11042', '07093', '11501', '92123', '00000', '11575', '07109',
       '11797', '10803', '11716', '11722', '11549-3650', '10162', '23502',
       '11518', '07020', '08807', '11577', '07114', '11003', '07201',
       '61702', '10103', '29616-0759', '35209-3114', '11520', '11735',
       '10129', '11005', '41042', '11590', '06901', '07208', '11530',
       '13221', '10954', '11111', '10107'], dtype=object)

处理带横杠的数据

先查看带有横杠的数据有多少条:

dash_row = data["Incident Zip"].str.contains('-').fillna(False)#将不包含横杠的列标记为False
data[dash_row]
Pandas处理混乱数据_第1张图片
带横杠的数据

因为其他编码都是五位数,只需将编码全部进行截断,只保留前五位,就可以把多余的代码去除了。

顺便看看还有没有超过五位的编码:

longcode = data['Incident Zip'].str.len() > 5
data['Incident Zip'][longcode].unique()
array(['77092-2016', '55164-0737', '000000', '11549-3650', '29616-0759',
       '35209-3114'], dtype=object)

对这些编码进行截断

data['Incident Zip'] = data['Incident Zip'].str.slice(0,5)
data['Incident Zip'].unique()
array(['11432', '11378', '10032', '10023', '10027', '11372', '11419',
       '11417', '10011', '11225', '11218', '10003', '10029', '10466',
       '11219', '10025', '10310', '11236', nan, '10033', '11216', '10016',
       '10305', '10312', '10026', '10309', '10036', '11433', '11235',
       '11213', '11379', '11101', '10014', '11231', '11234', '10457',
       '10459', '10465', '11207', '10002', '10034', '11233', '10453',
       '10456', '10469', '11374', '11221', '11421', '11215', '10007',
       '10019', '11205', '11418', '11369', '11249', '10005', '10009',
       '11211', '11412', '10458', '11229', '10065', '10030', '11222',
       '10024', '10013', '11420', '11365', '10012', '11214', '11212',
       '10022', '11232', '11040', '11226', '10281', '11102', '11208',
       '10001', '10472', '11414', '11223', '10040', '11220', '11373',
       '11203', '11691', '11356', '10017', '10452', '10280', '11217',
       '10031', '11201', '11358', '10128', '11423', '10039', '10010',
       '11209', '10021', '10037', '11413', '11375', '11238', '10473',
       '11103', '11354', '11361', '11106', '11385', '10463', '10467',
       '11204', '11237', '11377', '11364', '11434', '11435', '11210',
       '11228', '11368', '11694', '10464', '11415', '10314', '10301',
       '10018', '10038', '11105', '11230', '10468', '11104', '10471',
       '11416', '10075', '11422', '11355', '10028', '10462', '10306',
       '10461', '11224', '11429', '10035', '11366', '11362', '11206',
       '10460', '10304', '11360', '11411', '10455', '10475', '10069',
       '10303', '10308', '10302', '11357', '10470', '11367', '11370',
       '10454', '10451', '11436', '11426', '10153', '11004', '11428',
       '11427', '11001', '11363', '10004', '10474', '11430', '10000',
       '10307', '11239', '10119', '10006', '10048', '11697', '11692',
       '11693', '10573', '00083', '11559', '10020', '77056', '11776',
       '70711', '10282', '11109', '10044', '02061', '77092', '14225',
       '55164', '19711', '07306', '00000', '90010', '11747', '23541',
       '11788', '07604', '10112', '11563', '11580', '07087', '11042',
       '07093', '11501', '92123', '11575', '07109', '11797', '10803',
       '11716', '11722', '11549', '10162', '23502', '11518', '07020',
       '08807', '11577', '07114', '11003', '07201', '61702', '10103',
       '29616', '35209', '11520', '11735', '10129', '11005', '41042',
       '11590', '06901', '07208', '11530', '13221', '10954', '11111',
       '10107'], dtype=object)

经过这样修改之后的编码已经比较规范了,接下来可以利用编码对数据进行筛选查看了,数据中编码以0和1开头的最多,可以先查看一下以其他数字开头的数据有哪些。

zips = data['Incident Zip']
zero_one = zips.str.startswith('0') | zips.str.startswith('1')
n_zeroone = ~(zero_one) & zips.notnull()
zips[n_zeroone]
12102    77056
13450    70711
29136    77092
30939    55164
44008    90010
47048    23541
57636    92123
71001    92123
71834    23502
80573    61702
85821    29616
89304    35209
94201    41042
Name: Incident Zip, dtype: object
data[n_zeroone][['Incident Zip','Descriptor','City']].sort_values('Incident Zip')
Pandas处理混乱数据_第2张图片
非0/1开头的数据

还可以通过计数的方式查看数据分布

data['City'].str.upper().value_counts()
BROOKLYN               31662
NEW YORK               22664
BRONX                  18438
STATEN ISLAND           4766
JAMAICA                 2246
FLUSHING                1803
ASTORIA                 1568
RIDGEWOOD               1073
CORONA                   707
OZONE PARK               693
LONG ISLAND CITY         678
FAR ROCKAWAY             652
ELMHURST                 647
WOODSIDE                 609
EAST ELMHURST            562
QUEENS VILLAGE           549
JACKSON HEIGHTS          541
FOREST HILLS             541
SOUTH RICHMOND HILL      521
MASPETH                  473
WOODHAVEN                464
FRESH MEADOWS            435
SPRINGFIELD GARDENS      434
BAYSIDE                  411
SOUTH OZONE PARK         410
RICHMOND HILL            404
REGO PARK                402
MIDDLE VILLAGE           396
SAINT ALBANS             387
WHITESTONE               348
                       ...  
WOODBURY                   1
STAMFORD                   1
LAWRENCE                   1
LOS ANGELES                1
SYRACUSE                   1
ROSELYN                    1
LYNBROOK                   1
MINEOLA                    1
FLORENCE                   1
EAST ROCKAWAY              1
FREEPORT                   1
CHEEKTOWAGA                1
ROSLYN                     1
WEST NEW YORK              1
NEW YOR                    1
UNION CITY                 1
HASBROCK HEIGHTS           1
ELIZABETH                  1
NORWELL                    1
BELLEVILLE                 1
EDGEWATER                  1
RYEBROOK                   1
NANUET                     1
JERSEY CITY                1
GREENVILLE                 1
BRIARWOOD                  1
BLOOMIGTON                 1
BIRMINGHAM                 1
COL.ANVURES                1
BRIDGE  WATER              1
Name: City, Length: 100, dtype: int64
data['Incident Zip'].unique()
array(['11432', '11378', '10032', '10023', '10027', '11372', '11419',
       '11417', '10011', '11225', '11218', '10003', '10029', '10466',
       '11219', '10025', '10310', '11236', nan, '10033', '11216', '10016',
       '10305', '10312', '10026', '10309', '10036', '11433', '11235',
       '11213', '11379', '11101', '10014', '11231', '11234', '10457',
       '10459', '10465', '11207', '10002', '10034', '11233', '10453',
       '10456', '10469', '11374', '11221', '11421', '11215', '10007',
       '10019', '11205', '11418', '11369', '11249', '10005', '10009',
       '11211', '11412', '10458', '11229', '10065', '10030', '11222',
       '10024', '10013', '11420', '11365', '10012', '11214', '11212',
       '10022', '11232', '11040', '11226', '10281', '11102', '11208',
       '10001', '10472', '11414', '11223', '10040', '11220', '11373',
       '11203', '11691', '11356', '10017', '10452', '10280', '11217',
       '10031', '11201', '11358', '10128', '11423', '10039', '10010',
       '11209', '10021', '10037', '11413', '11375', '11238', '10473',
       '11103', '11354', '11361', '11106', '11385', '10463', '10467',
       '11204', '11237', '11377', '11364', '11434', '11435', '11210',
       '11228', '11368', '11694', '10464', '11415', '10314', '10301',
       '10018', '10038', '11105', '11230', '10468', '11104', '10471',
       '11416', '10075', '11422', '11355', '10028', '10462', '10306',
       '10461', '11224', '11429', '10035', '11366', '11362', '11206',
       '10460', '10304', '11360', '11411', '10455', '10475', '10069',
       '10303', '10308', '10302', '11357', '10470', '11367', '11370',
       '10454', '10451', '11436', '11426', '10153', '11004', '11428',
       '11427', '11001', '11363', '10004', '10474', '11430', '10000',
       '10307', '11239', '10119', '10006', '10048', '11697', '11692',
       '11693', '10573', '00083', '11559', '10020', '77056', '11776',
       '70711', '10282', '11109', '10044', '02061', '77092', '14225',
       '55164', '19711', '07306', '00000', '90010', '11747', '23541',
       '11788', '07604', '10112', '11563', '11580', '07087', '11042',
       '07093', '11501', '92123', '11575', '07109', '11797', '10803',
       '11716', '11722', '11549', '10162', '23502', '11518', '07020',
       '08807', '11577', '07114', '11003', '07201', '61702', '10103',
       '29616', '35209', '11520', '11735', '10129', '11005', '41042',
       '11590', '06901', '07208', '11530', '13221', '10954', '11111',
       '10107'], dtype=object)

对机器学习感兴趣的朋友可以加群:
Pandas处理混乱数据_第3张图片
机器学习菜鸡互啄

你可能感兴趣的:(Pandas处理混乱数据)