Xilinx 7系列FPGA全系内置了一个ADC,称呼为XADC。
这个XADC,内部是两个1mbps的ADC,可以采集模拟信号转为数字信号送给FPGA内部使用。
XADC内部可以直接获取芯片结温和FPGA的若干供电电压(7系列不包括VCCO),用于监控FPGA内部状况。同时提供了17对差分管脚,其中一对专用的模拟差分输入,16对复用的模拟差分输入,不使用的时候可以作为普通的User I/O。
关于XADC具体的结构,功能和各个参数的含义,请参考相关文档。这里不做详细描述。另外有两点需要注意。
1.关于参考电压的设置,会影响误差范围及采样值的计算公式。
2.模拟差分输入对模拟信号幅值有要求,需要外边模拟电路进行一定程度的转换。
假设现在需要用XADC来获取几个模拟信号的信息,那么应该如何操作呢。下面解释一种个人偏爱设置方式。
注意红框中的几点:
1.使用DRP端口获取数字信号,这样控制似乎更简单一些。
2.使用连续采样模式,ADC一直工作在数据采集模式,采集后就可以进行输出。
3.使用Channel Sequencer模式,由于只有两个XADC而需要采样的数据过多,所以让XADC依次陆续进行采样。
4.设置好DRP端口的时钟频率,50或100M都可以,无特殊要求。
IP设置第二页,主要是设置Calibration、平均值和外部MUX。这几个可以暂时跳过,等熟悉XADC的使用后在进行深入了解。
第三页设置告警参数,可以不用。如果需要的话,可以设置一下,便于使用。
第四页设置需要使用的通道,这里选择温度和三个供电电压,并选择一个专用的模拟输入通道和前三个复用的模拟输入通道。
最后一页是Summary,可以看看设置是否有问题,没有需要设置的地方。
这个时候最基本的一个多通道获取数据的XADC设置好了,至于设置中没有细说的地方,可以等熟练使用之后进行研究,找出最合适的使用模式。
下面是如何使用这个生成的IP。由于使用DRP端口来读取数据,所以需要设计一个DRP读写控制器。不过由于XADC本身就提供了一些信号,所以这个设计其实非常简单。
//input
//取数据,所以输入部分没有使用的必要
.di_in(16'b0), // input wire [15 : 0] di_in
.dwe_in(1'b0), // input wire dwe_in
//clock
.dclk_in(clk_100M), // input wire dclk_in
.reset_in(!rst_n), // input wire reset_in
.daddr_in({2'b0,channel_out}), // input wire [6 : 0] daddr_in
.den_in(eoc_out), // input wire den_in
.drdy_out(drdy_out), // output wire drdy_out
.do_out(do_out), // output wire [15 : 0] do_out
.channel_out(channel_out), // output wire [4 : 0] channel_out
.eoc_out(eoc_out), // output wire eoc_out
// outside adc input
.vp_in(), // input wire vp_in
.vn_in(), // input wire vn_in
.alarm_out(), // output wire alarm_out
.eos_out(), // output wire eos_out
.busy_out() // output wire busy_out
余下四个DRP端口,两个输出两个输入。两个输出直接引出来,其中do_out就是最终需要的数据。这个端口是16bit,取高12bit即可(对应XADC中宣称的12位)。
XADC的IP端口中还有两个,名为eoc_out和channel_out。将eoc_out连接到DRP端口的den_in端口,含义是当多路采样的某一路完成采样后,则启动DRP端口操作,开始进行读取数据。将channel_out补两位之后送入daddr_in作为DRP端口操作的地址信号。这样就完成了DRP的读写操作。
不过这样输出的数据,会周期性的在几个端口数据之间变化。所以通常在后端加一个过滤设置,具体行为是,当代表DRP操作完成的drdy_out拉高的时候,根据channel_out的值来判断是哪一个通道的。
if(drdy_out == 1'b1 && channel_out ==5'd0)begin
Temperature <= do_out[15:3] ;
end
else if ( drdy_out == 1'b1 && channel_out ==5'd1) begin
Vcc_int <= do_out[15:3] ;
end
else begin
Vcc_int <= Vcc_int ;
Temperature <= Temperature ;
end
关于每个采样通道的具体地址,可以参考手册
温度换算公式和曲线如下图所示
电压换算公式和变化曲线如下图
至于模拟差分输入Pin,直接送到顶层的相对应管脚即可。注意Vivado工具可能需要对复用的模拟Pin进行电平约束,根据VCCO的电压值选择相应的lvcmos即可,例如1.8V的VCCO就选择lvcmos18即可。
这样就可以获取对应的模拟采样数据了。由于绝大部分情况下需要检测的模拟信号变化相对较慢,使用XADC是足够用于检测的。
涉及到XADC的使用问题还有MIG IP。MIG是Memory Interface的IP,也就是DDR3之类的DDR存储器IP。由于此类接口一般速率过高,会需要温度信息对接口做一定的矫正。在MIG IP的配置中,会默认启动XADC。
此时的XADC仅仅需要提供温度信息就可以了。当需要提供更多信息,就需要独立配置XADC,这样工程中就会生成两个XADC;或者例化了两个MIG IP,这样各自就会需要一个XADC。由于硬件中只有一个XADC模块,当发现工程中需要多个XADC模块的时候,工具就会提示出错。
解决方案也非常简单,MIG IP中去掉XADC。然后在设计中独立例化XADC IP。根据上文的做法获取温度信息后送往MIG。MIG IP去掉XADC后会生成一个温度端口用来接收数据。这样就不会发生冲突。
另外一个非常便捷的获取温度信息的方案就是使用Hardware Manager。在Hardware Manager中打开XADC就能看到温度信息。
其实XADC所有通道数据都可以通过这个方法获取。