相位累加器由N位全加器和N位寄存器级联累加而成。每来一个时钟脉冲,相位累加器以频率控制字A为步长进行累加运算,产生所需的频率控制数据; 相位寄存器在时钟的控制下把累加的结果作为数据存储器(ROM)的地址(通常取其高十位的数据作为ROM的地址),对数据存储器(ROM)进行寻址,同时把累加运算的结果反馈给相位累加器,以便进行下一次累加运算。这样累加器在参考时钟的作用下,进行线形相位累加,当相位累加器累积满量时就会产生一次溢出,完成一个周期性的动作,这个周期便是DDS合成信号的一个周期,累加器的溢出频率便是DDS输出的信号频率。
由此可以知道对于位数为N的相位累加器,若频率控制字为A,则DDS系统输出的信号频率为:
可见,理论上通过设定相位累加器位数N,频率控制A和基准时钟的值,就可产生任一频率的输出。而频率的分辨率为:
由于基准频率一般固定,因此DDS的分辨率就取决于相位累加器的位数,相位累加器的为数越高,其分辨率也就越高。
数据存储器(ROM) 又称作查找表,实质是一波形存储器,其中存储离散后的波形幅值以及每个值对应的地址值。用相位累加器输出的数据作为取样地址,对波形存储器进行相位幅值转换,相位寄存器每寻址一次ROM, ROM就输出一个相对应的信号相位/幅度值,即可在给定的时间上确定输出的波形幅值。由于信号相位/幅度值用二进制码表示,如果需要输出模拟波形(例如正弦波) ,需送入D /A转换器进行数/模转换,最后经低通滤波器进行平滑处理,就可以得到平滑的信号波形了。
三 DDS的实现
1) 相位累加器和寄存器
在DDS的设计中,累加器是一个很关键的部分,它决定着频率的范围和分辨率。本设计中采用的是N=24位的二进制累加器和寄存器,其工作原理如图2所示:
在QuartusⅡ中实现DDS累加器和寄存器的设计如图3所示:其中累加器与寄存器在同一个模块中,累加器每加一次输入到寄存器中就进行一次锁存,再将锁存后的结果反馈给累加器作为其下一次累加的初始值。同时取锁存后的数据的
图3
高十位作为查表的地址值。在图3中 clk为系统时钟, fre_word 为输入24位的频率控制字,address为输出取锁存后取十位(其对应的离散波形为一个周期取1024点)的地址值。
1) 波形表的生成
在本设计中,DDS能输出三种波形,分别为方波,三角波和正弦波。为了
确不失真地输出原波形,将一个波形周期离散成1024对相位/幅值(也对应与前面的地址值),存储于表中。由于方波和三角波的实现算法相对简单,因此只是正弦波的算法用表来实现。
a.正弦波
正弦波的生成是先通过C语言实现正弦函数的算法并生成一个后缀为.mif 的文件sin.mif。其语言函数如下:
#include
#include"math.h"
void main()
{
int s;
int i;
FILE *fp;
fp=fopen("1024.mif","w+");
fprintf(fp," -- MAX+plus II - generated Memory Initialization File/n");
fprintf(fp," -- By 00022809/n/n/n/n/n");
fprintf(fp,"WIDTH=8;/n/n");
fprintf(fp,"DEPTH=1024;/n/n");
fprintf(fp,"ADDRESS_RADIX=HEX;/n/n");
fprintf(fp,"DATA_RADIX=HEX;/n/n");
fprintf(fp,"CONTENT BEGIN/n");
for(i=0;i<1024;i++)
{s=127+sin(atan(1.0)*8*i/1024)*127;
fprintf(fp,"%x/t:/t%x;/n",i,s);
}
fprintf(fp,"END;/n");
fclose(fp);
}
然后在QuartusⅡ生成一个基于 sin.mif 文件的后缀为 sin.v的文件,此文件即可作为一个模块来调用。其模块引脚图如图4所示:
图4
其中address为输入的地址值,clock为系统时钟,clken为使能信号,为高电平有效,q为输出的波形幅值。
b.方波的生成
方波算法比较容易实现。由于其只有高低电平两种状态,因此只需要在一个周期的时间中间位置翻转电平即可。其实现过程如下
由于相位累加器的值是线形累加的,因此地址address的值也是线形累加的,对所给地址值address进行判断,当地址值的最高位为0时,便将波形幅值各字位赋值1,否则赋值0。
c.三角波的生成
三角波的生成原理与方波生成原理相似,也是对地址address的值进行判断,当其最高位为0时,取其1~8位为三角波的波形幅值,即令q[7:0] =address[8:1]
当其最高位为1时,对其1~8位的值取反后再作为三角波的波形幅值,即令
q[7:0] = ~ address[8 : 1]。
2) 操作模块的实现
操作模块主要包括按键模块和状态转换模块
a.按键
在本设计中采用的是单脉冲式的按键模式,每按一次键,就产生一个标准时钟的脉冲。按键为低电平有效,检测到有键按下,便输出一个单脉冲。
b.状态转换
该模块是整个设计中的一个核心模块,其功能接受外部操作,并结合当前状态执行相应的处理,其实质是一个状态机。
在设计中一共用到了四个按键,各按键对应的功能如下表1:
键号 |
功能 |
1 |
复位键:在任何状态按下此键则输出频率为1Hz的正弦波 |
2 |
波形模式选择键:按键选择波形,每按一次键波形则改变一次,波形在正弦,方波,三角波三种模式下切换 |
3 |
频率挡位选择键:按键选择频率挡位,每按一次键选择到不同的频率挡位,频率一共分为四挡,分别为1Hz ~ 1KHz, 1KHz ~ 10KHz,10KHz ~ 200KHz,大于200KHz |
4 |
频率步进选择键:按键选择频率步进值,每按一次键,其步进值根据此时所处的频率挡位的不同而不同:当频率处于1Hz ~ 1KHz 时,步进值为1Hz,当频率处于1KHz ~ 10KHz 时,步进值为100Hz,当频率处于10KHz ~ 200KHz 时,步进值为1KHz,当频率大于200KHz 时,步进值为10KHz, |
表1 按键功能表
其程序的实现实质是一个Mealy状态机的实现,应用case语句对键值进行判断并进行各种状态的转换和对应操作。其模块引脚图如图5所示:
图5
其中 clk为系统时钟,keyin为输入键值,wavemode为输出波形模式值,length为输出频率控制字给累加器进行累加。
3) 频率显示模块的实现
频率显示模块所执行的功能是将当前输出波形的频率在LCD上显示出来。根据输出波形频率计算公式: 可知,只要知道了频率控制字A,标准时钟频率fclk,累加器的长度N,就可计算出输出频率 .
其实现过程依次用到的模块有:乘法模块,除法模块,二进制数转化为BCD码,LED显示模块。
小结:
本文简述了DDS的工作原理,介绍了DDS的FPGA实现。经实验证明,根据此思路设计的DDS具有频率范围宽,约为1Hz ~ 800K Hz,调节方便,波形高度保真的特点。但由于时间有限,其功能方便还有许多不足之处,有待进一步得到扩展。