- 云服务器性能优化全攻略:CPU、内存、磁盘IO调优实战
Gloria歌洛莉亚
c语言数据库服务器python性能优化
在云计算时代,服务器性能直接影响应用响应速度、用户体验和运营成本。无论是高并发网站、实时数据分析还是机器学习训练,优化云服务器性能都是开发者必须掌握的核心技能。本攻略将从CPU调度、内存管理、磁盘IO三个维度,结合Linux系统特性和实际场景,提供可落地的优化方案。一、CPU性能调优:从调度策略到并行计算1.1CPU资源监控与瓶颈定位实时监控工具:top-c#动态查看进程CPU占用(按P键按CPU
- 基于国产手机 SoC 的多模态模型推理加速实战:GPU × NPU 协同优化全流程解析
观熵
智能终端Ai探索与创新实践人工智能androidNPUGPU
基于国产手机SoC的多模态模型推理加速实战:GPU×NPU协同优化全流程解析关键词多模态模型推理、NPU硬件加速、GPU并行计算、国产手机SoC、端侧部署优化、华为昇腾NPU、小米Surge芯片、高通AIEngine、异构计算加速、TFLiteNNAPI、ONNXRuntimeEP摘要随着国产智能手机SoC(如华为昇腾、vivoV系列、小米Surge、紫光展锐、联发科Dimensity)的异构计算
- 精通 triton 使用 MLIR 的源码逻辑 - 第001节:triton 的应用简介
项目使用到MLIR,通过了解triton对MLIR的使用,体会到MLIR在较大项目中的使用方式,汇总一下。1.Triton概述OpenAITriton是一个开源的编程语言和编译器,旨在简化GPU高性能计算(HPC)的开发,特别是针对深度学习、科学计算等需要高效并行计算的领域。既允许开发者编写高度优化的代码,又不必过度关注底层硬件细节。这样,通过简化高性能计算,可以加速新算法的实现和实验。传统GPU
- Python 并行新思路:不移除 GIL 的多核并发之道
清水白石008
pythonPython题库python服务器开发语言
Python并行新思路:不移除GIL的多核并发之道引言大家好,我是[您的名字],一位在Python领域深耕多年的软件专家。今天,我们来探讨一个Python开发者经常面临的挑战:全局解释器锁(GIL)以及如何在它的限制下,充分利用多核CPU的并行计算能力。GIL,这个Python语言的“老朋友”,长期以来一直备受争议。它确保了在CPython解释器中,同一时刻只有一个线程执行Python字节码。这简
- 深入探索Hadoop技术:全面学习指南
引言在大数据时代,高效地存储、处理和分析海量数据已成为企业决策与创新的关键驱动力。Hadoop,作为开源的大数据处理框架,以其强大的分布式存储和并行计算能力,以及丰富的生态系统,为企业提供了应对大规模数据挑战的有效解决方案。本文旨在为初学者和进阶者提供一份详尽的Hadoop技术学习指南,涵盖HDFS、MapReduce、YARN等核心组件,以及Hive、Pig、HBase等生态系统工具,助您踏上H
- 老码农和你一起学AI:Python系列-Pandas 并行计算
chilavert318
熬之滴水穿石pandaspython
但凡用到科学计算,Pandas几乎是绕不开的工具——它以简洁的API、灵活的数据操作能力成为数据处理的“瑞士军刀”。但随着数据量增长(比如从10万行到1000万行),你可能会发现:原本流畅的代码突然变慢了,一个简单的apply操作要等好几分钟,读取大文件时进度条仿佛凝固了。这不是你的代码有问题,而是原生Pandas的“单线程”基因在多核时代遇到了瓶颈。并行计算正是解决这个问题的核心方案。简单来说,
- 2025年服务器技术全景解析:量子计算、液冷革命与未来生态构建
国际云1688
腾讯云国际量子计算腾讯云服务器云计算架构运维
2025年服务器技术全景解析:量子计算、液冷革命与未来生态构建一、量子计算:从实验室到产业化的跨越1.中国量子计算产业化突破•本源量子“悟空”超导计算机:搭载72位自主超导量子芯片“悟空芯”,支持198个量子比特并行计算,已为全球139个国家完成超32万个计算任务。在金融领域,其投资组合优化应用使资源消耗较经典计算机降低50%,黑石集团等机构已将其用于高频交易策略优化;在生物医药领域,量子混合神经
- pytorch的学习笔记
wyn20001128
算法
一cuda 2006年,NVIDIA公司发布了CUDA(ComputeUnifiedDeviceArchitecture),是一种新的操作GPU计算的硬件和软件架构,是建立在NVIDIA的GPUs上的一个通用并行计算平台和编程模型,它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序。 CPU是用于负责逻辑性比较强的计算,GPU专注于执行高度线程化的并行处理任务。所以
- Python 线程与进程在实际项目中的问题及应对策略
女码农的重启
pythonjava线程进程
一、引言在Python编程里,线程(Thread)和进程(Process)是实现并发与并行计算的关键工具,能有效提升程序执行效率与资源利用率。然而,实际项目应用中,因二者特性及Python运行环境(如GIL,全局解释器锁)等因素,会遭遇诸多问题。本文深入剖析这些问题,并给出应对方案。二、Python线程的问题与解决(一)GIL引发的性能瓶颈Python的全局解释器锁,限制了同一进程内多个线程并行执
- Android 异构计算与 OpenCL/CUDA/OpenVX 的协同方式实战解析
观熵
国产NPU×Android推理优化android人工智能
Android异构计算与OpenCL/CUDA/OpenVX的协同方式实战解析关键词Android异构计算、OpenCL、CUDA、OpenVX、GPU加速、NPU调度、HSA架构、神经网络推理、计算图编排、SoC协同处理、AI芯片编程摘要随着国产SoC平台持续迭代,Android系统中异构计算模式已从传统CPU+GPU并行计算,扩展到集成NPU、DSP、ISP等多核单元的复杂协同体系。在AI推理
- 告别内存焦虑!用Dask打开Python大数据并行计算的“任意门“
小张在编程
python大数据开发语言
引言当你在Jupyter里用Pandas读取20GB的CSV文件,看到内存占用率从10%飙升到90%,最后弹出"MemoryError"时;当你想对亿级数据做分组聚合,却发现单线程计算要等上半小时——这些场景是不是像极了用小推车搬运万吨货物?Python生态中,Dask库就像一台"并行计算推土机",能把大数据拆分成小块并行处理,让你的普通电脑也能拥有分布式计算的能力。本文将从原理到实战,带你掌握这
- 显卡GPU的架构和工作原理
InnoLink_1024
芯片人工智能AGI架构硬件架构人工智能
显卡GPU(图形处理单元)是专为并行计算和图形处理设计的芯片,广泛应用于游戏、科学计算、人工智能和数据中心等领域。以下详细介绍GPU的架构和工作原理,涵盖核心组件、计算流程和关键技术,尽量简洁清晰。一、GPU架构概述GPU架构与CPU不同,专注于高并行计算,适合处理大量简单、重复的任务。其核心设计目标是最大化吞吐量,而非单任务的低延迟。主流GPU厂商(如NVIDIA、AMD、Intel)架构虽有差
- Java多线程实战指南:从基础到高并发的核心技术解析
添砖Java中
javapython开发语言springbootspringcloudspring
一、为什么必须掌握多线程?在单核CPU时代,多线程主要用于提高程序响应速度;在如今的多核处理器时代,多线程已成为榨干硬件性能的必备技能。无论是高并发Web服务器、实时数据处理系统,还是游戏引擎,都离不开多线程技术的支撑。典型案例:电商秒杀系统:1秒内处理10万+请求大数据处理:并行计算TB级数据金融交易系统:毫秒级订单撮合二、线程创建的四大核心方式1.继承Thread类(不推荐)classMyTh
- 华为OD技术面试高频考点(算法篇、AI方向)
一、Transformer核心机制:自注意力(Self-Attention)公式:Attention=softmax(QK^T/√d_k)v运作原理:1.Q/K/V矩阵:输入向量通过线性变换生成Query(查询)、Key(键)、Value(值)2.注意力权重:Softmax(QKT/√d_k)→计算词与词之间的关联度3.输出:权重与Value加权求和→捕获长距离依赖-优势:并行计算、全局上下文感知
- 量子化学仿真软件:NWChem_(12).并行计算技术
kkchenjj
化工仿真2化工仿真模拟化工仿真
并行计算技术并行计算技术在量子化学仿真软件中扮演着至关重要的角色。随着计算化学任务的复杂度和数据规模的不断增长,传统的单核计算已经无法满足高性能计算的需求。并行计算通过利用多个处理器或计算节点来分担计算任务,可以在显著减少计算时间的同时提高计算效率。在NWChem中,支持多种并行计算模式,包括共享内存并行(OpenMP)、分布式内存并行(MPI)以及混合并行(OpenMP+MPI)。本节将详细介绍
- 2025年跑深度学习电脑配置-深度学习显卡推荐
OpenCV图像识别
人工智能深度学习智能电视人工智能
2025年跑深度学习任务,电脑配置需从处理器、内存、显卡、存储、散热与电源、扩展性、网络连接等多方面综合考量,以下是具体分析:处理器(CPU)多核高性能:深度学习涉及大量并行计算任务,需要处理器具备强大的多核处理能力。英特尔至强Scalable处理器(SapphireRapids或后续架构)和AMDEPYC处理器(Genoa或后续架构)是不错的选择。英特尔至强Scalable处理器提供卓越的单核性
- Spark RDD 及性能调优
Aurora_NeAr
sparkwpfc#
RDDProgrammingRDD核心架构与特性分区(Partitions):数据被切分为多个分区;每个分区在集群节点上独立处理;分区是并行计算的基本单位。计算函数(ComputeFunction):每个分区应用相同的转换函数;惰性执行机制。依赖关系(Dependencies)窄依赖:1个父分区→1个子分区(map、filter)。宽依赖:1个父分区→多个子分区(groupByKey、join)。
- Hadoop-Mapreduce入门
Hadoop-Mapreduce入门MapReduce介绍mapreduce设计MapReduce编程规范入门案例WordCountMapReduce介绍MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景)。知识。Map负责“分”,把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。Redu
- 【机器学习笔记Ⅰ】7 向量化
巴伦是只猫
机器学习机器学习笔记人工智能
向量化(Vectorization)详解向量化是将数据或操作转换为向量(或矩阵)形式,并利用并行计算高效处理的技术。它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。1.为什么需要向量化?(1)传统循环的缺陷低效:Python的for循环逐元素操作,速度慢。代码冗长:需手动处理每个元素。示例:计算两个数组的点积(非向量化)a=[1,2,3]b=[4
- 9、并行计算在现代计算中的应用与优化
seed
探索并行计算与HPC新范式并行计算高性能计算大数据分析
并行计算在现代计算中的应用与优化1.引言并行计算作为一种高效的计算模式,近年来在工业和学术界得到了广泛的应用和发展。随着计算需求的不断增加,传统的串行计算模式已经难以满足现代复杂问题的需求。并行计算通过将计算任务分解为多个子任务,并在多个处理单元上同时执行,从而显著提高了计算效率。本文将探讨并行计算在现代计算中的应用与优化,重点介绍并行计算的基本原理、应用场景和技术细节。2.并行计算的基本原理并行
- Node.js worker_threads:并发 vs 并行
红衣大叔
nodejs帮助文档node.js
一、核心结论Node.js的worker_threads模块实现的是并行计算,而非传统意义上的“并发”。其通过操作系统级线程实现多核CPU的并行执行,同时保留Node.js单线程事件循环的并发模型。二、关键概念解析1.并发(Concurrency)vs并行(Parallelism)并发:指系统同时处理多个任务的能力,但任务可能交替执行(如单核CPU通过时间片轮转)。Node.js主线程的事件循环是
- 深度学习实验:GPU加速,突破性能瓶颈
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
深度学习实验:GPU加速,突破性能瓶颈1.背景介绍随着深度学习模型变得越来越复杂和庞大,传统的CPU已经无法满足训练和推理的计算需求。GPU凭借其强大的并行计算能力和专门为矩阵运算优化的架构,成为了深度学习领域的核心加速器。本文将探讨如何利用GPU加速深度学习实验,突破性能瓶颈,提高模型训练和推理的效率。2.核心概念与联系2.1GPU架构GPU(图形处理器)最初是为了加速图形渲染而设计的,但由于其
- AI编程基础:学习Python是进入AI领域的必经之路(文末含学习路线与知识推荐)
Clf丶忆笙
AI人工智能开发全栈教程学习python人工智能ai
文章目录Python市场行情:AI开发的首选语言为什么学习Python对AI至关重要AI开发所需的Python知识体系Python编程基础科学计算与数据处理机器学习与深度学习性能优化与并行计算Python学习路线推荐阶段一:Python编程基础(1-2个月)阶段二:科学计算与数据处理(1-2个月)阶段三:机器学习基础(2-3个月)阶段四:深度学习与AI专项(3-6个月)阶段五:进阶与专项深化(持续
- 【Rust日报】Rust稳定2024版本将于 2025年2月20日发布
fastembed-rs-AI嵌入库FastEmbed的Rust实现,提供了快速的文本嵌入、图像嵌入和候选项重新排序功能。它具有以下主要特性:支持同步使用,无需依赖Tokio。使用@pykeio/ort进行高性能的ONNX推理。使用@huggingface/tokenizers进行快速编码。支持使用@rayon-rs/rayon进行批量嵌入生成和并行计算。默认模型是FlagEmbedding,在M
- 33、探索云计算与安全:基础与挑战
探索云计算与安全:基础与挑战1.云计算简介云计算已经成为现代信息技术的重要组成部分,为企业和个人提供了灵活、高效、低成本的计算资源和服务。本文将深入探讨云计算的基本概念、发展历程、服务模型、部署模型以及面临的主要挑战。1.1云计算的历史与发展云计算的发展可以追溯到多个阶段,包括主机计算、集群计算、网格计算、分布式和并行计算、虚拟化、Web2.0、面向服务的计算(SOC)和实用计算。每个阶段都为云计
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- 嵌入式原理与应用篇---常见基础知识(9)
Atticus-Orion
微处理器原理与应用篇上位机操作篇上位机知识篇网络微处理器原理与应用
冯诺伊曼计算机的组成部分及功能冯诺伊曼计算机的设计基于“存储程序”原理,其核心思想是将程序和数据以二进制形式存储在存储器中,由计算机自动执行。以下是各部分的功能及设计思路:一、运算器(ArithmeticLogicUnit,ALU)功能:负责执行算术运算(如加减乘除)和逻辑运算(如与、或、非),是计算机处理数据的核心部件。设计思路:通过逻辑门电路(如全加器、乘法器)实现基本运算,采用并行计算结构提
- MapReduce概述
Tate小白
大数据学习mapreduce
1、MapReduce概述1.1MapReduce定义MapReduce是一个分布式运算程序的编程框架,是用户开发“Hadoop的数据分析应用”的核心框架。MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景)。Map负责“分”,即把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。Reduc
- 在MATLAB中使用GPU加速计算及多GPU配置
东北豆子哥
CUDA数值计算/数值优化Matlab/Octavematlab
文章目录在MATLAB中使用GPU加速计算及多GPU配置一、基本GPU加速使用1.检查GPU可用性2.将数据传输到GPU3.执行GPU计算二、多GPU配置与使用1.选择特定GPU设备2.并行计算工具箱中的多GPU支持3.数据并行处理(适用于深度学习)三、高级技巧1.异步计算2.优化GPU内存使用3.使用GPU加速函数四、注意事项在MATLAB中使用GPU加速计算及多GPU配置MATLAB提供了强大
- 公钥密码体系崩溃风险:Shor算法可在多项式时间内破解RSA、ECC等基于大整数分解和离散对数问题的公钥算法。4099量子位的量子计算机运行Shor算法可在10秒内破解RSA2048
百态老人
算法量子计算
基于我搜索到的资料,以下从四个维度全面分析公钥密码体系的量子威胁现状及应对策略:一、Shor算法对公钥密码体系的威胁机制算法原理与攻击效率Shor算法通过量子傅里叶变换(QFT)高效求解整数分解和离散对数问题:核心步骤包括随机数生成、模指数周期检测(f(x)=axmod Nf(x)=a^x\modNf(x)=axmodN)和量子并行计算,复杂度仅O(log3N)O(\log^3N)O(log3
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc